1 | /* This file contains the clock task, which handles time related functions.
|
---|
2 | * Important events that are handled by the CLOCK include setting and
|
---|
3 | * monitoring alarm timers and deciding when to (re)schedule processes.
|
---|
4 | * The CLOCK offers a direct interface to kernel processes. System services
|
---|
5 | * can access its services through system calls, such as sys_setalarm(). The
|
---|
6 | * CLOCK task thus is hidden from the outside world.
|
---|
7 | *
|
---|
8 | * Changes:
|
---|
9 | * Oct 08, 2005 reordering and comment editing (A. S. Woodhull)
|
---|
10 | * Mar 18, 2004 clock interface moved to SYSTEM task (Jorrit N. Herder)
|
---|
11 | * Sep 30, 2004 source code documentation updated (Jorrit N. Herder)
|
---|
12 | * Sep 24, 2004 redesigned alarm timers (Jorrit N. Herder)
|
---|
13 | *
|
---|
14 | * The function do_clocktick() is triggered by the clock's interrupt
|
---|
15 | * handler when a watchdog timer has expired or a process must be scheduled.
|
---|
16 | *
|
---|
17 | * In addition to the main clock_task() entry point, which starts the main
|
---|
18 | * loop, there are several other minor entry points:
|
---|
19 | * clock_stop: called just before MINIX shutdown
|
---|
20 | * get_uptime: get realtime since boot in clock ticks
|
---|
21 | * set_timer: set a watchdog timer (+)
|
---|
22 | * reset_timer: reset a watchdog timer (+)
|
---|
23 | * read_clock: read the counter of channel 0 of the 8253A timer
|
---|
24 | *
|
---|
25 | * (+) The CLOCK task keeps tracks of watchdog timers for the entire kernel.
|
---|
26 | * The watchdog functions of expired timers are executed in do_clocktick().
|
---|
27 | * It is crucial that watchdog functions not block, or the CLOCK task may
|
---|
28 | * be blocked. Do not send() a message when the receiver is not expecting it.
|
---|
29 | * Instead, notify(), which always returns, should be used.
|
---|
30 | */
|
---|
31 |
|
---|
32 | #include "kernel.h"
|
---|
33 | #include "proc.h"
|
---|
34 | #include <signal.h>
|
---|
35 | #include <minix/com.h>
|
---|
36 |
|
---|
37 | /* Function prototype for PRIVATE functions. */
|
---|
38 | FORWARD _PROTOTYPE( void init_clock, (void) );
|
---|
39 | FORWARD _PROTOTYPE( int clock_handler, (irq_hook_t *hook) );
|
---|
40 | FORWARD _PROTOTYPE( int do_clocktick, (message *m_ptr) );
|
---|
41 |
|
---|
42 | /* Clock parameters. */
|
---|
43 | #define COUNTER_FREQ (2*TIMER_FREQ) /* counter frequency using square wave */
|
---|
44 | #define LATCH_COUNT 0x00 /* cc00xxxx, c = channel, x = any */
|
---|
45 | #define SQUARE_WAVE 0x36 /* ccaammmb, a = access, m = mode, b = BCD */
|
---|
46 | /* 11x11, 11 = LSB then MSB, x11 = sq wave */
|
---|
47 | #define TIMER_COUNT ((unsigned) (TIMER_FREQ/HZ)) /* initial value for counter*/
|
---|
48 | #define TIMER_FREQ 1193182L /* clock frequency for timer in PC and AT */
|
---|
49 |
|
---|
50 | #define CLOCK_ACK_BIT 0x80 /* PS/2 clock interrupt acknowledge bit */
|
---|
51 |
|
---|
52 | /* The CLOCK's timers queue. The functions in <timers.h> operate on this.
|
---|
53 | * Each system process possesses a single synchronous alarm timer. If other
|
---|
54 | * kernel parts want to use additional timers, they must declare their own
|
---|
55 | * persistent (static) timer structure, which can be passed to the clock
|
---|
56 | * via (re)set_timer().
|
---|
57 | * When a timer expires its watchdog function is run by the CLOCK task.
|
---|
58 | */
|
---|
59 | PRIVATE timer_t *clock_timers; /* queue of CLOCK timers */
|
---|
60 | PRIVATE clock_t next_timeout; /* realtime that next timer expires */
|
---|
61 |
|
---|
62 | /* The time is incremented by the interrupt handler on each clock tick. */
|
---|
63 | PRIVATE clock_t realtime; /* real time clock */
|
---|
64 | PRIVATE irq_hook_t clock_hook; /* interrupt handler hook */
|
---|
65 |
|
---|
66 | /*===========================================================================*
|
---|
67 | * clock_task *
|
---|
68 | *===========================================================================*/
|
---|
69 | PUBLIC void clock_task()
|
---|
70 | {
|
---|
71 | /* Main program of clock task. If the call is not HARD_INT it is an error.
|
---|
72 | */
|
---|
73 | message m; /* message buffer for both input and output */
|
---|
74 | int result; /* result returned by the handler */
|
---|
75 |
|
---|
76 | init_clock(); /* initialize clock task */
|
---|
77 |
|
---|
78 | /* Main loop of the clock task. Get work, process it. Never reply. */
|
---|
79 | while (TRUE) {
|
---|
80 |
|
---|
81 | /* Go get a message. */
|
---|
82 | receive(ANY, &m);
|
---|
83 |
|
---|
84 | /* Handle the request. Only clock ticks are expected. */
|
---|
85 | switch (m.m_type) {
|
---|
86 | case HARD_INT:
|
---|
87 | result = do_clocktick(&m); /* handle clock tick */
|
---|
88 | break;
|
---|
89 | default: /* illegal request type */
|
---|
90 | kprintf("CLOCK: illegal request %d from %d.\n", m.m_type,m.m_source);
|
---|
91 | }
|
---|
92 | }
|
---|
93 | }
|
---|
94 |
|
---|
95 | /*===========================================================================*
|
---|
96 | * do_clocktick *
|
---|
97 | *===========================================================================*/
|
---|
98 | PRIVATE int do_clocktick(m_ptr)
|
---|
99 | message *m_ptr; /* pointer to request message */
|
---|
100 | {
|
---|
101 | /* Despite its name, this routine is not called on every clock tick. It
|
---|
102 | * is called on those clock ticks when a lot of work needs to be done.
|
---|
103 | */
|
---|
104 |
|
---|
105 | /* A process used up a full quantum. The interrupt handler stored this
|
---|
106 | * process in 'prev_ptr'. First make sure that the process is not on the
|
---|
107 | * scheduling queues. Then announce the process ready again. Since it has
|
---|
108 | * no more time left, it gets a new quantum and is inserted at the right
|
---|
109 | * place in the queues. As a side-effect a new process will be scheduled.
|
---|
110 | */
|
---|
111 | if (prev_ptr->p_ticks_left <= 0 && priv(prev_ptr)->s_flags & PREEMPTIBLE) {
|
---|
112 | lock_dequeue(prev_ptr); /* take it off the queues */
|
---|
113 | lock_enqueue(prev_ptr); /* and reinsert it again */
|
---|
114 | }
|
---|
115 |
|
---|
116 | /* Check if a clock timer expired and run its watchdog function. */
|
---|
117 | if (next_timeout <= realtime) {
|
---|
118 | tmrs_exptimers(&clock_timers, realtime, NULL);
|
---|
119 | next_timeout = clock_timers == NULL ?
|
---|
120 | TMR_NEVER : clock_timers->tmr_exp_time;
|
---|
121 | }
|
---|
122 |
|
---|
123 | /* Inhibit sending a reply. */
|
---|
124 | return(EDONTREPLY);
|
---|
125 | }
|
---|
126 |
|
---|
127 | /*===========================================================================*
|
---|
128 | * init_clock *
|
---|
129 | *===========================================================================*/
|
---|
130 | PRIVATE void init_clock()
|
---|
131 | {
|
---|
132 | /* Initialize the CLOCK's interrupt hook. */
|
---|
133 | clock_hook.proc_nr = CLOCK;
|
---|
134 |
|
---|
135 | /* Initialize channel 0 of the 8253A timer to, e.g., 60 Hz. */
|
---|
136 | outb(TIMER_MODE, SQUARE_WAVE); /* set timer to run continuously */
|
---|
137 | outb(TIMER0, TIMER_COUNT); /* load timer low byte */
|
---|
138 | outb(TIMER0, TIMER_COUNT >> 8); /* load timer high byte */
|
---|
139 | put_irq_handler(&clock_hook, CLOCK_IRQ, clock_handler);/* register handler */
|
---|
140 | enable_irq(&clock_hook); /* ready for clock interrupts */
|
---|
141 | }
|
---|
142 |
|
---|
143 | /*===========================================================================*
|
---|
144 | * clock_stop *
|
---|
145 | *===========================================================================*/
|
---|
146 | PUBLIC void clock_stop()
|
---|
147 | {
|
---|
148 | /* Reset the clock to the BIOS rate. (For rebooting) */
|
---|
149 | outb(TIMER_MODE, 0x36);
|
---|
150 | outb(TIMER0, 0);
|
---|
151 | outb(TIMER0, 0);
|
---|
152 | }
|
---|
153 |
|
---|
154 | /*===========================================================================*
|
---|
155 | * clock_handler *
|
---|
156 | *===========================================================================*/
|
---|
157 | PRIVATE int clock_handler(hook)
|
---|
158 | irq_hook_t *hook;
|
---|
159 | {
|
---|
160 | /* This executes on each clock tick (i.e., every time the timer chip generates
|
---|
161 | * an interrupt). It does a little bit of work so the clock task does not have
|
---|
162 | * to be called on every tick. The clock task is called when:
|
---|
163 | *
|
---|
164 | * (1) the scheduling quantum of the running process has expired, or
|
---|
165 | * (2) a timer has expired and the watchdog function should be run.
|
---|
166 | *
|
---|
167 | * Many global global and static variables are accessed here. The safety of
|
---|
168 | * this must be justified. All scheduling and message passing code acquires a
|
---|
169 | * lock by temporarily disabling interrupts, so no conflicts with calls from
|
---|
170 | * the task level can occur. Furthermore, interrupts are not reentrant, the
|
---|
171 | * interrupt handler cannot be bothered by other interrupts.
|
---|
172 | *
|
---|
173 | * Variables that are updated in the clock's interrupt handler:
|
---|
174 | * lost_ticks:
|
---|
175 | * Clock ticks counted outside the clock task. This for example
|
---|
176 | * is used when the boot monitor processes a real mode interrupt.
|
---|
177 | * realtime:
|
---|
178 | * The current uptime is incremented with all outstanding ticks.
|
---|
179 | * proc_ptr, bill_ptr:
|
---|
180 | * These are used for accounting. It does not matter if proc.c
|
---|
181 | * is changing them, provided they are always valid pointers,
|
---|
182 | * since at worst the previous process would be billed.
|
---|
183 | */
|
---|
184 | register unsigned ticks;
|
---|
185 |
|
---|
186 | /* Acknowledge the PS/2 clock interrupt. */
|
---|
187 | if (machine.ps_mca) outb(PORT_B, inb(PORT_B) | CLOCK_ACK_BIT);
|
---|
188 |
|
---|
189 | /* Get number of ticks and update realtime. */
|
---|
190 | ticks = lost_ticks + 1;
|
---|
191 | lost_ticks = 0;
|
---|
192 | realtime += ticks;
|
---|
193 |
|
---|
194 | /* Update user and system accounting times. Charge the current process for
|
---|
195 | * user time. If the current process is not billable, that is, if a non-user
|
---|
196 | * process is running, charge the billable process for system time as well.
|
---|
197 | * Thus the unbillable process' user time is the billable user's system time.
|
---|
198 | */
|
---|
199 | proc_ptr->p_user_time += ticks;
|
---|
200 | if (priv(proc_ptr)->s_flags & PREEMPTIBLE) {
|
---|
201 | proc_ptr->p_ticks_left -= ticks;
|
---|
202 | }
|
---|
203 | if (! (priv(proc_ptr)->s_flags & BILLABLE)) {
|
---|
204 | bill_ptr->p_sys_time += ticks;
|
---|
205 | bill_ptr->p_ticks_left -= ticks;
|
---|
206 | }
|
---|
207 |
|
---|
208 | /* Check if do_clocktick() must be called. Done for alarms and scheduling.
|
---|
209 | * Some processes, such as the kernel tasks, cannot be preempted.
|
---|
210 | */
|
---|
211 | if ((next_timeout <= realtime) || (proc_ptr->p_ticks_left <= 0)) {
|
---|
212 | prev_ptr = proc_ptr; /* store running process */
|
---|
213 | lock_notify(HARDWARE, CLOCK); /* send notification */
|
---|
214 | }
|
---|
215 | return(1); /* reenable interrupts */
|
---|
216 | }
|
---|
217 |
|
---|
218 | /*===========================================================================*
|
---|
219 | * get_uptime *
|
---|
220 | *===========================================================================*/
|
---|
221 | PUBLIC clock_t get_uptime()
|
---|
222 | {
|
---|
223 | /* Get and return the current clock uptime in ticks. */
|
---|
224 | return(realtime);
|
---|
225 | }
|
---|
226 |
|
---|
227 | /*===========================================================================*
|
---|
228 | * set_timer *
|
---|
229 | *===========================================================================*/
|
---|
230 | PUBLIC void set_timer(tp, exp_time, watchdog)
|
---|
231 | struct timer *tp; /* pointer to timer structure */
|
---|
232 | clock_t exp_time; /* expiration realtime */
|
---|
233 | tmr_func_t watchdog; /* watchdog to be called */
|
---|
234 | {
|
---|
235 | /* Insert the new timer in the active timers list. Always update the
|
---|
236 | * next timeout time by setting it to the front of the active list.
|
---|
237 | */
|
---|
238 | tmrs_settimer(&clock_timers, tp, exp_time, watchdog, NULL);
|
---|
239 | next_timeout = clock_timers->tmr_exp_time;
|
---|
240 | }
|
---|
241 |
|
---|
242 | /*===========================================================================*
|
---|
243 | * reset_timer *
|
---|
244 | *===========================================================================*/
|
---|
245 | PUBLIC void reset_timer(tp)
|
---|
246 | struct timer *tp; /* pointer to timer structure */
|
---|
247 | {
|
---|
248 | /* The timer pointed to by 'tp' is no longer needed. Remove it from both the
|
---|
249 | * active and expired lists. Always update the next timeout time by setting
|
---|
250 | * it to the front of the active list.
|
---|
251 | */
|
---|
252 | tmrs_clrtimer(&clock_timers, tp, NULL);
|
---|
253 | next_timeout = (clock_timers == NULL) ?
|
---|
254 | TMR_NEVER : clock_timers->tmr_exp_time;
|
---|
255 | }
|
---|
256 |
|
---|
257 | /*===========================================================================*
|
---|
258 | * read_clock *
|
---|
259 | *===========================================================================*/
|
---|
260 | PUBLIC unsigned long read_clock()
|
---|
261 | {
|
---|
262 | /* Read the counter of channel 0 of the 8253A timer. This counter counts
|
---|
263 | * down at a rate of TIMER_FREQ and restarts at TIMER_COUNT-1 when it
|
---|
264 | * reaches zero. A hardware interrupt (clock tick) occurs when the counter
|
---|
265 | * gets to zero and restarts its cycle.
|
---|
266 | */
|
---|
267 | unsigned count;
|
---|
268 |
|
---|
269 | outb(TIMER_MODE, LATCH_COUNT);
|
---|
270 | count = inb(TIMER0);
|
---|
271 | count |= (inb(TIMER0) << 8);
|
---|
272 |
|
---|
273 | return count;
|
---|
274 | }
|
---|