[4] | 1 | /* This task provides an interface between the kernel and user-space system
|
---|
| 2 | * processes. System services can be accessed by doing a kernel call. Kernel
|
---|
| 3 | * calls are transformed into request messages, which are handled by this
|
---|
| 4 | * task. By convention, a sys_call() is transformed in a SYS_CALL request
|
---|
| 5 | * message that is handled in a function named do_call().
|
---|
| 6 | *
|
---|
| 7 | * A private call vector is used to map all kernel calls to the functions that
|
---|
| 8 | * handle them. The actual handler functions are contained in separate files
|
---|
| 9 | * to keep this file clean. The call vector is used in the system task's main
|
---|
| 10 | * loop to handle all incoming requests.
|
---|
| 11 | *
|
---|
| 12 | * In addition to the main sys_task() entry point, which starts the main loop,
|
---|
| 13 | * there are several other minor entry points:
|
---|
| 14 | * get_priv: assign privilege structure to user or system process
|
---|
| 15 | * send_sig: send a signal directly to a system process
|
---|
| 16 | * cause_sig: take action to cause a signal to occur via PM
|
---|
| 17 | * umap_local: map virtual address in LOCAL_SEG to physical
|
---|
| 18 | * umap_remote: map virtual address in REMOTE_SEG to physical
|
---|
| 19 | * umap_bios: map virtual address in BIOS_SEG to physical
|
---|
| 20 | * virtual_copy: copy bytes from one virtual address to another
|
---|
| 21 | * get_randomness: accumulate randomness in a buffer
|
---|
| 22 | *
|
---|
| 23 | * Changes:
|
---|
| 24 | * Aug 04, 2005 check if kernel call is allowed (Jorrit N. Herder)
|
---|
| 25 | * Jul 20, 2005 send signal to services with message (Jorrit N. Herder)
|
---|
| 26 | * Jan 15, 2005 new, generalized virtual copy function (Jorrit N. Herder)
|
---|
| 27 | * Oct 10, 2004 dispatch system calls from call vector (Jorrit N. Herder)
|
---|
| 28 | * Sep 30, 2004 source code documentation updated (Jorrit N. Herder)
|
---|
| 29 | */
|
---|
| 30 |
|
---|
| 31 | #include "kernel.h"
|
---|
| 32 | #include "system.h"
|
---|
| 33 | #include <stdlib.h>
|
---|
| 34 | #include <signal.h>
|
---|
| 35 | #include <unistd.h>
|
---|
| 36 | #include <sys/sigcontext.h>
|
---|
| 37 | #include <ibm/memory.h>
|
---|
| 38 | #include "protect.h"
|
---|
| 39 |
|
---|
| 40 | /* Declaration of the call vector that defines the mapping of kernel calls
|
---|
| 41 | * to handler functions. The vector is initialized in sys_init() with map(),
|
---|
| 42 | * which makes sure the kernel call numbers are ok. No space is allocated,
|
---|
| 43 | * because the dummy is declared extern. If an illegal call is given, the
|
---|
| 44 | * array size will be negative and this won't compile.
|
---|
| 45 | */
|
---|
| 46 | PUBLIC int (*call_vec[NR_SYS_CALLS])(message *m_ptr);
|
---|
| 47 |
|
---|
| 48 | #define map(call_nr, handler) \
|
---|
| 49 | {extern int dummy[NR_SYS_CALLS>(unsigned)(call_nr-KERNEL_CALL) ? 1:-1];} \
|
---|
| 50 | call_vec[(call_nr-KERNEL_CALL)] = (handler)
|
---|
| 51 |
|
---|
| 52 | FORWARD _PROTOTYPE( void initialize, (void));
|
---|
| 53 |
|
---|
| 54 | /*===========================================================================*
|
---|
| 55 | * sys_task *
|
---|
| 56 | *===========================================================================*/
|
---|
| 57 | PUBLIC void sys_task()
|
---|
| 58 | {
|
---|
| 59 | /* Main entry point of sys_task. Get the message and dispatch on type. */
|
---|
| 60 | static message m;
|
---|
| 61 | register int result;
|
---|
| 62 | register struct proc *caller_ptr;
|
---|
| 63 | unsigned int call_nr;
|
---|
| 64 | int s;
|
---|
| 65 |
|
---|
| 66 | /* Initialize the system task. */
|
---|
| 67 | initialize();
|
---|
| 68 |
|
---|
| 69 | while (TRUE) {
|
---|
| 70 | /* Get work. Block and wait until a request message arrives. */
|
---|
| 71 | receive(ANY, &m);
|
---|
| 72 | call_nr = (unsigned) m.m_type - KERNEL_CALL;
|
---|
| 73 | caller_ptr = proc_addr(m.m_source);
|
---|
| 74 |
|
---|
| 75 | /* See if the caller made a valid request and try to handle it. */
|
---|
| 76 | if (! (priv(caller_ptr)->s_call_mask & (1<<call_nr))) {
|
---|
| 77 | kprintf("SYSTEM: request %d from %d denied.\n", call_nr,m.m_source);
|
---|
| 78 | result = ECALLDENIED; /* illegal message type */
|
---|
| 79 | } else if (call_nr >= NR_SYS_CALLS) { /* check call number */
|
---|
| 80 | kprintf("SYSTEM: illegal request %d from %d.\n", call_nr,m.m_source);
|
---|
| 81 | result = EBADREQUEST; /* illegal message type */
|
---|
| 82 | }
|
---|
| 83 | else {
|
---|
| 84 | result = (*call_vec[call_nr])(&m); /* handle the kernel call */
|
---|
| 85 | }
|
---|
| 86 |
|
---|
| 87 | /* Send a reply, unless inhibited by a handler function. Use the kernel
|
---|
| 88 | * function lock_send() to prevent a system call trap. The destination
|
---|
| 89 | * is known to be blocked waiting for a message.
|
---|
| 90 | */
|
---|
| 91 | if (result != EDONTREPLY) {
|
---|
| 92 | m.m_type = result; /* report status of call */
|
---|
| 93 | if (OK != (s=lock_send(m.m_source, &m))) {
|
---|
| 94 | kprintf("SYSTEM, reply to %d failed: %d\n", m.m_source, s);
|
---|
| 95 | }
|
---|
| 96 | }
|
---|
| 97 | }
|
---|
| 98 | }
|
---|
| 99 |
|
---|
| 100 | /*===========================================================================*
|
---|
| 101 | * initialize *
|
---|
| 102 | *===========================================================================*/
|
---|
| 103 | PRIVATE void initialize(void)
|
---|
| 104 | {
|
---|
| 105 | register struct priv *sp;
|
---|
| 106 | int i;
|
---|
| 107 |
|
---|
| 108 | /* Initialize IRQ handler hooks. Mark all hooks available. */
|
---|
| 109 | for (i=0; i<NR_IRQ_HOOKS; i++) {
|
---|
| 110 | irq_hooks[i].proc_nr = NONE;
|
---|
| 111 | }
|
---|
| 112 |
|
---|
| 113 | /* Initialize all alarm timers for all processes. */
|
---|
| 114 | for (sp=BEG_PRIV_ADDR; sp < END_PRIV_ADDR; sp++) {
|
---|
| 115 | tmr_inittimer(&(sp->s_alarm_timer));
|
---|
| 116 | }
|
---|
| 117 |
|
---|
| 118 | /* Initialize the call vector to a safe default handler. Some kernel calls
|
---|
| 119 | * may be disabled or nonexistant. Then explicitly map known calls to their
|
---|
| 120 | * handler functions. This is done with a macro that gives a compile error
|
---|
| 121 | * if an illegal call number is used. The ordering is not important here.
|
---|
| 122 | */
|
---|
| 123 | for (i=0; i<NR_SYS_CALLS; i++) {
|
---|
| 124 | call_vec[i] = do_unused;
|
---|
| 125 | }
|
---|
| 126 |
|
---|
| 127 | /* Process management. */
|
---|
| 128 | map(SYS_FORK, do_fork); /* a process forked a new process */
|
---|
| 129 | map(SYS_EXEC, do_exec); /* update process after execute */
|
---|
| 130 | map(SYS_EXIT, do_exit); /* clean up after process exit */
|
---|
| 131 | map(SYS_NICE, do_nice); /* set scheduling priority */
|
---|
| 132 | map(SYS_PRIVCTL, do_privctl); /* system privileges control */
|
---|
| 133 | map(SYS_TRACE, do_trace); /* request a trace operation */
|
---|
| 134 |
|
---|
| 135 | /* Signal handling. */
|
---|
| 136 | map(SYS_KILL, do_kill); /* cause a process to be signaled */
|
---|
| 137 | map(SYS_GETKSIG, do_getksig); /* PM checks for pending signals */
|
---|
| 138 | map(SYS_ENDKSIG, do_endksig); /* PM finished processing signal */
|
---|
| 139 | map(SYS_SIGSEND, do_sigsend); /* start POSIX-style signal */
|
---|
| 140 | map(SYS_SIGRETURN, do_sigreturn); /* return from POSIX-style signal */
|
---|
| 141 |
|
---|
| 142 | /* Device I/O. */
|
---|
| 143 | map(SYS_IRQCTL, do_irqctl); /* interrupt control operations */
|
---|
| 144 | map(SYS_DEVIO, do_devio); /* inb, inw, inl, outb, outw, outl */
|
---|
| 145 | map(SYS_SDEVIO, do_sdevio); /* phys_insb, _insw, _outsb, _outsw */
|
---|
| 146 | map(SYS_VDEVIO, do_vdevio); /* vector with devio requests */
|
---|
| 147 | map(SYS_INT86, do_int86); /* real-mode BIOS calls */
|
---|
| 148 |
|
---|
| 149 | /* Memory management. */
|
---|
| 150 | map(SYS_NEWMAP, do_newmap); /* set up a process memory map */
|
---|
| 151 | map(SYS_SEGCTL, do_segctl); /* add segment and get selector */
|
---|
| 152 | map(SYS_MEMSET, do_memset); /* write char to memory area */
|
---|
| 153 |
|
---|
| 154 | /* Copying. */
|
---|
| 155 | map(SYS_UMAP, do_umap); /* map virtual to physical address */
|
---|
| 156 | map(SYS_VIRCOPY, do_vircopy); /* use pure virtual addressing */
|
---|
| 157 | map(SYS_PHYSCOPY, do_physcopy); /* use physical addressing */
|
---|
| 158 | map(SYS_VIRVCOPY, do_virvcopy); /* vector with copy requests */
|
---|
| 159 | map(SYS_PHYSVCOPY, do_physvcopy); /* vector with copy requests */
|
---|
| 160 |
|
---|
| 161 | /* Clock functionality. */
|
---|
| 162 | map(SYS_TIMES, do_times); /* get uptime and process times */
|
---|
| 163 | map(SYS_SETALARM, do_setalarm); /* schedule a synchronous alarm */
|
---|
| 164 |
|
---|
| 165 | /* System control. */
|
---|
| 166 | map(SYS_ABORT, do_abort); /* abort MINIX */
|
---|
| 167 | map(SYS_GETINFO, do_getinfo); /* request system information */
|
---|
| 168 | }
|
---|
| 169 |
|
---|
| 170 | /*===========================================================================*
|
---|
| 171 | * get_priv *
|
---|
| 172 | *===========================================================================*/
|
---|
| 173 | PUBLIC int get_priv(rc, proc_type)
|
---|
| 174 | register struct proc *rc; /* new (child) process pointer */
|
---|
| 175 | int proc_type; /* system or user process flag */
|
---|
| 176 | {
|
---|
| 177 | /* Get a privilege structure. All user processes share the same privilege
|
---|
| 178 | * structure. System processes get their own privilege structure.
|
---|
| 179 | */
|
---|
| 180 | register struct priv *sp; /* privilege structure */
|
---|
| 181 |
|
---|
| 182 | if (proc_type == SYS_PROC) { /* find a new slot */
|
---|
| 183 | for (sp = BEG_PRIV_ADDR; sp < END_PRIV_ADDR; ++sp)
|
---|
| 184 | if (sp->s_proc_nr == NONE && sp->s_id != USER_PRIV_ID) break;
|
---|
| 185 | if (sp->s_proc_nr != NONE) return(ENOSPC);
|
---|
| 186 | rc->p_priv = sp; /* assign new slot */
|
---|
| 187 | rc->p_priv->s_proc_nr = proc_nr(rc); /* set association */
|
---|
| 188 | rc->p_priv->s_flags = SYS_PROC; /* mark as privileged */
|
---|
| 189 | } else {
|
---|
| 190 | rc->p_priv = &priv[USER_PRIV_ID]; /* use shared slot */
|
---|
| 191 | rc->p_priv->s_proc_nr = INIT_PROC_NR; /* set association */
|
---|
| 192 | rc->p_priv->s_flags = 0; /* no initial flags */
|
---|
| 193 | }
|
---|
| 194 | return(OK);
|
---|
| 195 | }
|
---|
| 196 |
|
---|
| 197 | /*===========================================================================*
|
---|
| 198 | * get_randomness *
|
---|
| 199 | *===========================================================================*/
|
---|
| 200 | PUBLIC void get_randomness(source)
|
---|
| 201 | int source;
|
---|
| 202 | {
|
---|
| 203 | /* On machines with the RDTSC (cycle counter read instruction - pentium
|
---|
| 204 | * and up), use that for high-resolution raw entropy gathering. Otherwise,
|
---|
| 205 | * use the realtime clock (tick resolution).
|
---|
| 206 | *
|
---|
| 207 | * Unfortunately this test is run-time - we don't want to bother with
|
---|
| 208 | * compiling different kernels for different machines.
|
---|
| 209 | *
|
---|
| 210 | * On machines without RDTSC, we use read_clock().
|
---|
| 211 | */
|
---|
| 212 | int r_next;
|
---|
| 213 | unsigned long tsc_high, tsc_low;
|
---|
| 214 |
|
---|
| 215 | source %= RANDOM_SOURCES;
|
---|
| 216 | r_next= krandom.bin[source].r_next;
|
---|
| 217 | if (machine.processor > 486) {
|
---|
| 218 | read_tsc(&tsc_high, &tsc_low);
|
---|
| 219 | krandom.bin[source].r_buf[r_next] = tsc_low;
|
---|
| 220 | } else {
|
---|
| 221 | krandom.bin[source].r_buf[r_next] = read_clock();
|
---|
| 222 | }
|
---|
| 223 | if (krandom.bin[source].r_size < RANDOM_ELEMENTS) {
|
---|
| 224 | krandom.bin[source].r_size ++;
|
---|
| 225 | }
|
---|
| 226 | krandom.bin[source].r_next = (r_next + 1 ) % RANDOM_ELEMENTS;
|
---|
| 227 | }
|
---|
| 228 |
|
---|
| 229 | /*===========================================================================*
|
---|
| 230 | * send_sig *
|
---|
| 231 | *===========================================================================*/
|
---|
| 232 | PUBLIC void send_sig(proc_nr, sig_nr)
|
---|
| 233 | int proc_nr; /* system process to be signalled */
|
---|
| 234 | int sig_nr; /* signal to be sent, 1 to _NSIG */
|
---|
| 235 | {
|
---|
| 236 | /* Notify a system process about a signal. This is straightforward. Simply
|
---|
| 237 | * set the signal that is to be delivered in the pending signals map and
|
---|
| 238 | * send a notification with source SYSTEM.
|
---|
| 239 | */
|
---|
| 240 | register struct proc *rp;
|
---|
| 241 |
|
---|
| 242 | rp = proc_addr(proc_nr);
|
---|
| 243 | sigaddset(&priv(rp)->s_sig_pending, sig_nr);
|
---|
| 244 | lock_notify(SYSTEM, proc_nr);
|
---|
| 245 | }
|
---|
| 246 |
|
---|
| 247 | /*===========================================================================*
|
---|
| 248 | * cause_sig *
|
---|
| 249 | *===========================================================================*/
|
---|
| 250 | PUBLIC void cause_sig(proc_nr, sig_nr)
|
---|
| 251 | int proc_nr; /* process to be signalled */
|
---|
| 252 | int sig_nr; /* signal to be sent, 1 to _NSIG */
|
---|
| 253 | {
|
---|
| 254 | /* A system process wants to send a signal to a process. Examples are:
|
---|
| 255 | * - HARDWARE wanting to cause a SIGSEGV after a CPU exception
|
---|
| 256 | * - TTY wanting to cause SIGINT upon getting a DEL
|
---|
| 257 | * - FS wanting to cause SIGPIPE for a broken pipe
|
---|
| 258 | * Signals are handled by sending a message to PM. This function handles the
|
---|
| 259 | * signals and makes sure the PM gets them by sending a notification. The
|
---|
| 260 | * process being signaled is blocked while PM has not finished all signals
|
---|
| 261 | * for it.
|
---|
| 262 | * Race conditions between calls to this function and the system calls that
|
---|
| 263 | * process pending kernel signals cannot exist. Signal related functions are
|
---|
| 264 | * only called when a user process causes a CPU exception and from the kernel
|
---|
| 265 | * process level, which runs to completion.
|
---|
| 266 | */
|
---|
| 267 | register struct proc *rp;
|
---|
| 268 |
|
---|
| 269 | /* Check if the signal is already pending. Process it otherwise. */
|
---|
| 270 | rp = proc_addr(proc_nr);
|
---|
| 271 | if (! sigismember(&rp->p_pending, sig_nr)) {
|
---|
| 272 | sigaddset(&rp->p_pending, sig_nr);
|
---|
| 273 | if (! (rp->p_rts_flags & SIGNALED)) { /* other pending */
|
---|
| 274 | if (rp->p_rts_flags == 0) lock_dequeue(rp); /* make not ready */
|
---|
| 275 | rp->p_rts_flags |= SIGNALED | SIG_PENDING; /* update flags */
|
---|
| 276 | send_sig(PM_PROC_NR, SIGKSIG);
|
---|
| 277 | }
|
---|
| 278 | }
|
---|
| 279 | }
|
---|
| 280 |
|
---|
| 281 | /*===========================================================================*
|
---|
| 282 | * umap_local *
|
---|
| 283 | *===========================================================================*/
|
---|
| 284 | PUBLIC phys_bytes umap_local(rp, seg, vir_addr, bytes)
|
---|
| 285 | register struct proc *rp; /* pointer to proc table entry for process */
|
---|
| 286 | int seg; /* T, D, or S segment */
|
---|
| 287 | vir_bytes vir_addr; /* virtual address in bytes within the seg */
|
---|
| 288 | vir_bytes bytes; /* # of bytes to be copied */
|
---|
| 289 | {
|
---|
| 290 | /* Calculate the physical memory address for a given virtual address. */
|
---|
| 291 | vir_clicks vc; /* the virtual address in clicks */
|
---|
| 292 | phys_bytes pa; /* intermediate variables as phys_bytes */
|
---|
| 293 | phys_bytes seg_base;
|
---|
| 294 |
|
---|
| 295 | /* If 'seg' is D it could really be S and vice versa. T really means T.
|
---|
| 296 | * If the virtual address falls in the gap, it causes a problem. On the
|
---|
| 297 | * 8088 it is probably a legal stack reference, since "stackfaults" are
|
---|
| 298 | * not detected by the hardware. On 8088s, the gap is called S and
|
---|
| 299 | * accepted, but on other machines it is called D and rejected.
|
---|
| 300 | * The Atari ST behaves like the 8088 in this respect.
|
---|
| 301 | */
|
---|
| 302 |
|
---|
| 303 | if (bytes <= 0) return( (phys_bytes) 0);
|
---|
| 304 | if (vir_addr + bytes <= vir_addr) return 0; /* overflow */
|
---|
| 305 | vc = (vir_addr + bytes - 1) >> CLICK_SHIFT; /* last click of data */
|
---|
| 306 |
|
---|
| 307 | if (seg != T)
|
---|
| 308 | seg = (vc < rp->p_memmap[D].mem_vir + rp->p_memmap[D].mem_len ? D : S);
|
---|
| 309 |
|
---|
| 310 | if ((vir_addr>>CLICK_SHIFT) >= rp->p_memmap[seg].mem_vir +
|
---|
| 311 | rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 );
|
---|
| 312 |
|
---|
| 313 | if (vc >= rp->p_memmap[seg].mem_vir +
|
---|
| 314 | rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 );
|
---|
| 315 |
|
---|
| 316 | seg_base = (phys_bytes) rp->p_memmap[seg].mem_phys;
|
---|
| 317 | seg_base = seg_base << CLICK_SHIFT; /* segment origin in bytes */
|
---|
| 318 | pa = (phys_bytes) vir_addr;
|
---|
| 319 | pa -= rp->p_memmap[seg].mem_vir << CLICK_SHIFT;
|
---|
| 320 | return(seg_base + pa);
|
---|
| 321 | }
|
---|
| 322 |
|
---|
| 323 | /*===========================================================================*
|
---|
| 324 | * umap_remote *
|
---|
| 325 | *===========================================================================*/
|
---|
| 326 | PUBLIC phys_bytes umap_remote(rp, seg, vir_addr, bytes)
|
---|
| 327 | register struct proc *rp; /* pointer to proc table entry for process */
|
---|
| 328 | int seg; /* index of remote segment */
|
---|
| 329 | vir_bytes vir_addr; /* virtual address in bytes within the seg */
|
---|
| 330 | vir_bytes bytes; /* # of bytes to be copied */
|
---|
| 331 | {
|
---|
| 332 | /* Calculate the physical memory address for a given virtual address. */
|
---|
| 333 | struct far_mem *fm;
|
---|
| 334 |
|
---|
| 335 | if (bytes <= 0) return( (phys_bytes) 0);
|
---|
| 336 | if (seg < 0 || seg >= NR_REMOTE_SEGS) return( (phys_bytes) 0);
|
---|
| 337 |
|
---|
| 338 | fm = &rp->p_priv->s_farmem[seg];
|
---|
| 339 | if (! fm->in_use) return( (phys_bytes) 0);
|
---|
| 340 | if (vir_addr + bytes > fm->mem_len) return( (phys_bytes) 0);
|
---|
| 341 |
|
---|
| 342 | return(fm->mem_phys + (phys_bytes) vir_addr);
|
---|
| 343 | }
|
---|
| 344 |
|
---|
| 345 | /*===========================================================================*
|
---|
| 346 | * umap_bios *
|
---|
| 347 | *===========================================================================*/
|
---|
| 348 | PUBLIC phys_bytes umap_bios(rp, vir_addr, bytes)
|
---|
| 349 | register struct proc *rp; /* pointer to proc table entry for process */
|
---|
| 350 | vir_bytes vir_addr; /* virtual address in BIOS segment */
|
---|
| 351 | vir_bytes bytes; /* # of bytes to be copied */
|
---|
| 352 | {
|
---|
| 353 | /* Calculate the physical memory address at the BIOS. Note: currently, BIOS
|
---|
| 354 | * address zero (the first BIOS interrupt vector) is not considered as an
|
---|
| 355 | * error here, but since the physical address will be zero as well, the
|
---|
| 356 | * calling function will think an error occurred. This is not a problem,
|
---|
| 357 | * since no one uses the first BIOS interrupt vector.
|
---|
| 358 | */
|
---|
| 359 |
|
---|
| 360 | /* Check all acceptable ranges. */
|
---|
| 361 | if (vir_addr >= BIOS_MEM_BEGIN && vir_addr + bytes <= BIOS_MEM_END)
|
---|
| 362 | return (phys_bytes) vir_addr;
|
---|
| 363 | else if (vir_addr >= BASE_MEM_TOP && vir_addr + bytes <= UPPER_MEM_END)
|
---|
| 364 | return (phys_bytes) vir_addr;
|
---|
| 365 | kprintf("Warning, error in umap_bios, virtual address 0x%x\n", vir_addr);
|
---|
| 366 | return 0;
|
---|
| 367 | }
|
---|
| 368 |
|
---|
| 369 | /*===========================================================================*
|
---|
| 370 | * virtual_copy *
|
---|
| 371 | *===========================================================================*/
|
---|
| 372 | PUBLIC int virtual_copy(src_addr, dst_addr, bytes)
|
---|
| 373 | struct vir_addr *src_addr; /* source virtual address */
|
---|
| 374 | struct vir_addr *dst_addr; /* destination virtual address */
|
---|
| 375 | vir_bytes bytes; /* # of bytes to copy */
|
---|
| 376 | {
|
---|
| 377 | /* Copy bytes from virtual address src_addr to virtual address dst_addr.
|
---|
| 378 | * Virtual addresses can be in ABS, LOCAL_SEG, REMOTE_SEG, or BIOS_SEG.
|
---|
| 379 | */
|
---|
| 380 | struct vir_addr *vir_addr[2]; /* virtual source and destination address */
|
---|
| 381 | phys_bytes phys_addr[2]; /* absolute source and destination */
|
---|
| 382 | int seg_index;
|
---|
| 383 | int i;
|
---|
| 384 |
|
---|
| 385 | /* Check copy count. */
|
---|
| 386 | if (bytes <= 0) return(EDOM);
|
---|
| 387 |
|
---|
| 388 | /* Do some more checks and map virtual addresses to physical addresses. */
|
---|
| 389 | vir_addr[_SRC_] = src_addr;
|
---|
| 390 | vir_addr[_DST_] = dst_addr;
|
---|
| 391 | for (i=_SRC_; i<=_DST_; i++) {
|
---|
| 392 |
|
---|
| 393 | /* Get physical address. */
|
---|
| 394 | switch((vir_addr[i]->segment & SEGMENT_TYPE)) {
|
---|
| 395 | case LOCAL_SEG:
|
---|
| 396 | seg_index = vir_addr[i]->segment & SEGMENT_INDEX;
|
---|
| 397 | phys_addr[i] = umap_local( proc_addr(vir_addr[i]->proc_nr),
|
---|
| 398 | seg_index, vir_addr[i]->offset, bytes );
|
---|
| 399 | break;
|
---|
| 400 | case REMOTE_SEG:
|
---|
| 401 | seg_index = vir_addr[i]->segment & SEGMENT_INDEX;
|
---|
| 402 | phys_addr[i] = umap_remote( proc_addr(vir_addr[i]->proc_nr),
|
---|
| 403 | seg_index, vir_addr[i]->offset, bytes );
|
---|
| 404 | break;
|
---|
| 405 | case BIOS_SEG:
|
---|
| 406 | phys_addr[i] = umap_bios( proc_addr(vir_addr[i]->proc_nr),
|
---|
| 407 | vir_addr[i]->offset, bytes );
|
---|
| 408 | break;
|
---|
| 409 | case PHYS_SEG:
|
---|
| 410 | phys_addr[i] = vir_addr[i]->offset;
|
---|
| 411 | break;
|
---|
| 412 | default:
|
---|
| 413 | return(EINVAL);
|
---|
| 414 | }
|
---|
| 415 |
|
---|
| 416 | /* Check if mapping succeeded. */
|
---|
| 417 | if (phys_addr[i] <= 0 && vir_addr[i]->segment != PHYS_SEG)
|
---|
| 418 | return(EFAULT);
|
---|
| 419 | }
|
---|
| 420 |
|
---|
| 421 | /* Now copy bytes between physical addresseses. */
|
---|
| 422 | phys_copy(phys_addr[_SRC_], phys_addr[_DST_], (phys_bytes) bytes);
|
---|
| 423 | return(OK);
|
---|
| 424 | }
|
---|
| 425 |
|
---|