| 1 | /* This task provides an interface between the kernel and user-space system | 
|---|
| 2 | * processes. System services can be accessed by doing a kernel call. Kernel | 
|---|
| 3 | * calls are  transformed into request messages, which are handled by this | 
|---|
| 4 | * task. By convention, a sys_call() is transformed in a SYS_CALL request | 
|---|
| 5 | * message that is handled in a function named do_call(). | 
|---|
| 6 | * | 
|---|
| 7 | * A private call vector is used to map all kernel calls to the functions that | 
|---|
| 8 | * handle them. The actual handler functions are contained in separate files | 
|---|
| 9 | * to keep this file clean. The call vector is used in the system task's main | 
|---|
| 10 | * loop to handle all incoming requests. | 
|---|
| 11 | * | 
|---|
| 12 | * In addition to the main sys_task() entry point, which starts the main loop, | 
|---|
| 13 | * there are several other minor entry points: | 
|---|
| 14 | *   get_priv:          assign privilege structure to user or system process | 
|---|
| 15 | *   send_sig:          send a signal directly to a system process | 
|---|
| 16 | *   cause_sig:         take action to cause a signal to occur via PM | 
|---|
| 17 | *   umap_local:        map virtual address in LOCAL_SEG to physical | 
|---|
| 18 | *   umap_remote:       map virtual address in REMOTE_SEG to physical | 
|---|
| 19 | *   umap_bios:         map virtual address in BIOS_SEG to physical | 
|---|
| 20 | *   virtual_copy:      copy bytes from one virtual address to another | 
|---|
| 21 | *   get_randomness:    accumulate randomness in a buffer | 
|---|
| 22 | * | 
|---|
| 23 | * Changes: | 
|---|
| 24 | *   Aug 04, 2005   check if kernel call is allowed  (Jorrit N. Herder) | 
|---|
| 25 | *   Jul 20, 2005   send signal to services with message  (Jorrit N. Herder) | 
|---|
| 26 | *   Jan 15, 2005   new, generalized virtual copy function  (Jorrit N. Herder) | 
|---|
| 27 | *   Oct 10, 2004   dispatch system calls from call vector  (Jorrit N. Herder) | 
|---|
| 28 | *   Sep 30, 2004   source code documentation updated  (Jorrit N. Herder) | 
|---|
| 29 | */ | 
|---|
| 30 |  | 
|---|
| 31 | #include "kernel.h" | 
|---|
| 32 | #include "system.h" | 
|---|
| 33 | #include <stdlib.h> | 
|---|
| 34 | #include <signal.h> | 
|---|
| 35 | #include <unistd.h> | 
|---|
| 36 | #include <sys/sigcontext.h> | 
|---|
| 37 | #include <ibm/memory.h> | 
|---|
| 38 | #include "protect.h" | 
|---|
| 39 |  | 
|---|
| 40 | /* Declaration of the call vector that defines the mapping of kernel calls | 
|---|
| 41 | * to handler functions. The vector is initialized in sys_init() with map(), | 
|---|
| 42 | * which makes sure the kernel call numbers are ok. No space is allocated, | 
|---|
| 43 | * because the dummy is declared extern. If an illegal call is given, the | 
|---|
| 44 | * array size will be negative and this won't compile. | 
|---|
| 45 | */ | 
|---|
| 46 | PUBLIC int (*call_vec[NR_SYS_CALLS])(message *m_ptr); | 
|---|
| 47 |  | 
|---|
| 48 | #define map(call_nr, handler) \ | 
|---|
| 49 | {extern int dummy[NR_SYS_CALLS>(unsigned)(call_nr-KERNEL_CALL) ? 1:-1];} \ | 
|---|
| 50 | call_vec[(call_nr-KERNEL_CALL)] = (handler) | 
|---|
| 51 |  | 
|---|
| 52 | FORWARD _PROTOTYPE( void initialize, (void)); | 
|---|
| 53 |  | 
|---|
| 54 | /*===========================================================================* | 
|---|
| 55 | *                              sys_task                                     * | 
|---|
| 56 | *===========================================================================*/ | 
|---|
| 57 | PUBLIC void sys_task() | 
|---|
| 58 | { | 
|---|
| 59 | /* Main entry point of sys_task.  Get the message and dispatch on type. */ | 
|---|
| 60 | static message m; | 
|---|
| 61 | register int result; | 
|---|
| 62 | register struct proc *caller_ptr; | 
|---|
| 63 | unsigned int call_nr; | 
|---|
| 64 | int s; | 
|---|
| 65 |  | 
|---|
| 66 | /* Initialize the system task. */ | 
|---|
| 67 | initialize(); | 
|---|
| 68 |  | 
|---|
| 69 | while (TRUE) { | 
|---|
| 70 | /* Get work. Block and wait until a request message arrives. */ | 
|---|
| 71 | receive(ANY, &m); | 
|---|
| 72 | call_nr = (unsigned) m.m_type - KERNEL_CALL; | 
|---|
| 73 | caller_ptr = proc_addr(m.m_source); | 
|---|
| 74 |  | 
|---|
| 75 | /* See if the caller made a valid request and try to handle it. */ | 
|---|
| 76 | if (! (priv(caller_ptr)->s_call_mask & (1<<call_nr))) { | 
|---|
| 77 | kprintf("SYSTEM: request %d from %d denied.\n", call_nr,m.m_source); | 
|---|
| 78 | result = ECALLDENIED;                 /* illegal message type */ | 
|---|
| 79 | } else if (call_nr >= NR_SYS_CALLS) {             /* check call number */ | 
|---|
| 80 | kprintf("SYSTEM: illegal request %d from %d.\n", call_nr,m.m_source); | 
|---|
| 81 | result = EBADREQUEST;                 /* illegal message type */ | 
|---|
| 82 | } | 
|---|
| 83 | else { | 
|---|
| 84 | result = (*call_vec[call_nr])(&m);    /* handle the kernel call */ | 
|---|
| 85 | } | 
|---|
| 86 |  | 
|---|
| 87 | /* Send a reply, unless inhibited by a handler function. Use the kernel | 
|---|
| 88 | * function lock_send() to prevent a system call trap. The destination | 
|---|
| 89 | * is known to be blocked waiting for a message. | 
|---|
| 90 | */ | 
|---|
| 91 | if (result != EDONTREPLY) { | 
|---|
| 92 | m.m_type = result;                    /* report status of call */ | 
|---|
| 93 | if (OK != (s=lock_send(m.m_source, &m))) { | 
|---|
| 94 | kprintf("SYSTEM, reply to %d failed: %d\n", m.m_source, s); | 
|---|
| 95 | } | 
|---|
| 96 | } | 
|---|
| 97 | } | 
|---|
| 98 | } | 
|---|
| 99 |  | 
|---|
| 100 | /*===========================================================================* | 
|---|
| 101 | *                              initialize                                   * | 
|---|
| 102 | *===========================================================================*/ | 
|---|
| 103 | PRIVATE void initialize(void) | 
|---|
| 104 | { | 
|---|
| 105 | register struct priv *sp; | 
|---|
| 106 | int i; | 
|---|
| 107 |  | 
|---|
| 108 | /* Initialize IRQ handler hooks. Mark all hooks available. */ | 
|---|
| 109 | for (i=0; i<NR_IRQ_HOOKS; i++) { | 
|---|
| 110 | irq_hooks[i].proc_nr = NONE; | 
|---|
| 111 | } | 
|---|
| 112 |  | 
|---|
| 113 | /* Initialize all alarm timers for all processes. */ | 
|---|
| 114 | for (sp=BEG_PRIV_ADDR; sp < END_PRIV_ADDR; sp++) { | 
|---|
| 115 | tmr_inittimer(&(sp->s_alarm_timer)); | 
|---|
| 116 | } | 
|---|
| 117 |  | 
|---|
| 118 | /* Initialize the call vector to a safe default handler. Some kernel calls | 
|---|
| 119 | * may be disabled or nonexistant. Then explicitly map known calls to their | 
|---|
| 120 | * handler functions. This is done with a macro that gives a compile error | 
|---|
| 121 | * if an illegal call number is used. The ordering is not important here. | 
|---|
| 122 | */ | 
|---|
| 123 | for (i=0; i<NR_SYS_CALLS; i++) { | 
|---|
| 124 | call_vec[i] = do_unused; | 
|---|
| 125 | } | 
|---|
| 126 |  | 
|---|
| 127 | /* Process management. */ | 
|---|
| 128 | map(SYS_FORK, do_fork);               /* a process forked a new process */ | 
|---|
| 129 | map(SYS_EXEC, do_exec);               /* update process after execute */ | 
|---|
| 130 | map(SYS_EXIT, do_exit);               /* clean up after process exit */ | 
|---|
| 131 | map(SYS_NICE, do_nice);               /* set scheduling priority */ | 
|---|
| 132 | map(SYS_PRIVCTL, do_privctl);         /* system privileges control */ | 
|---|
| 133 | map(SYS_TRACE, do_trace);             /* request a trace operation */ | 
|---|
| 134 |  | 
|---|
| 135 | /* Signal handling. */ | 
|---|
| 136 | map(SYS_KILL, do_kill);               /* cause a process to be signaled */ | 
|---|
| 137 | map(SYS_GETKSIG, do_getksig);         /* PM checks for pending signals */ | 
|---|
| 138 | map(SYS_ENDKSIG, do_endksig);         /* PM finished processing signal */ | 
|---|
| 139 | map(SYS_SIGSEND, do_sigsend);         /* start POSIX-style signal */ | 
|---|
| 140 | map(SYS_SIGRETURN, do_sigreturn);     /* return from POSIX-style signal */ | 
|---|
| 141 |  | 
|---|
| 142 | /* Device I/O. */ | 
|---|
| 143 | map(SYS_IRQCTL, do_irqctl);           /* interrupt control operations */ | 
|---|
| 144 | map(SYS_DEVIO, do_devio);             /* inb, inw, inl, outb, outw, outl */ | 
|---|
| 145 | map(SYS_SDEVIO, do_sdevio);           /* phys_insb, _insw, _outsb, _outsw */ | 
|---|
| 146 | map(SYS_VDEVIO, do_vdevio);           /* vector with devio requests */ | 
|---|
| 147 | map(SYS_INT86, do_int86);             /* real-mode BIOS calls */ | 
|---|
| 148 |  | 
|---|
| 149 | /* Memory management. */ | 
|---|
| 150 | map(SYS_NEWMAP, do_newmap);           /* set up a process memory map */ | 
|---|
| 151 | map(SYS_SEGCTL, do_segctl);           /* add segment and get selector */ | 
|---|
| 152 | map(SYS_MEMSET, do_memset);           /* write char to memory area */ | 
|---|
| 153 |  | 
|---|
| 154 | /* Copying. */ | 
|---|
| 155 | map(SYS_UMAP, do_umap);               /* map virtual to physical address */ | 
|---|
| 156 | map(SYS_VIRCOPY, do_vircopy);         /* use pure virtual addressing */ | 
|---|
| 157 | map(SYS_PHYSCOPY, do_physcopy);       /* use physical addressing */ | 
|---|
| 158 | map(SYS_VIRVCOPY, do_virvcopy);       /* vector with copy requests */ | 
|---|
| 159 | map(SYS_PHYSVCOPY, do_physvcopy);     /* vector with copy requests */ | 
|---|
| 160 |  | 
|---|
| 161 | /* Clock functionality. */ | 
|---|
| 162 | map(SYS_TIMES, do_times);             /* get uptime and process times */ | 
|---|
| 163 | map(SYS_SETALARM, do_setalarm);       /* schedule a synchronous alarm */ | 
|---|
| 164 |  | 
|---|
| 165 | /* System control. */ | 
|---|
| 166 | map(SYS_ABORT, do_abort);             /* abort MINIX */ | 
|---|
| 167 | map(SYS_GETINFO, do_getinfo);         /* request system information */ | 
|---|
| 168 | } | 
|---|
| 169 |  | 
|---|
| 170 | /*===========================================================================* | 
|---|
| 171 | *                              get_priv                                     * | 
|---|
| 172 | *===========================================================================*/ | 
|---|
| 173 | PUBLIC int get_priv(rc, proc_type) | 
|---|
| 174 | register struct proc *rc;               /* new (child) process pointer */ | 
|---|
| 175 | int proc_type;                          /* system or user process flag */ | 
|---|
| 176 | { | 
|---|
| 177 | /* Get a privilege structure. All user processes share the same privilege | 
|---|
| 178 | * structure. System processes get their own privilege structure. | 
|---|
| 179 | */ | 
|---|
| 180 | register struct priv *sp;                     /* privilege structure */ | 
|---|
| 181 |  | 
|---|
| 182 | if (proc_type == SYS_PROC) {                  /* find a new slot */ | 
|---|
| 183 | for (sp = BEG_PRIV_ADDR; sp < END_PRIV_ADDR; ++sp) | 
|---|
| 184 | if (sp->s_proc_nr == NONE && sp->s_id != USER_PRIV_ID) break; | 
|---|
| 185 | if (sp->s_proc_nr != NONE) return(ENOSPC); | 
|---|
| 186 | rc->p_priv = sp;                          /* assign new slot */ | 
|---|
| 187 | rc->p_priv->s_proc_nr = proc_nr(rc);      /* set association */ | 
|---|
| 188 | rc->p_priv->s_flags = SYS_PROC;           /* mark as privileged */ | 
|---|
| 189 | } else { | 
|---|
| 190 | rc->p_priv = &priv[USER_PRIV_ID];         /* use shared slot */ | 
|---|
| 191 | rc->p_priv->s_proc_nr = INIT_PROC_NR;     /* set association */ | 
|---|
| 192 | rc->p_priv->s_flags = 0;                  /* no initial flags */ | 
|---|
| 193 | } | 
|---|
| 194 | return(OK); | 
|---|
| 195 | } | 
|---|
| 196 |  | 
|---|
| 197 | /*===========================================================================* | 
|---|
| 198 | *                              get_randomness                               * | 
|---|
| 199 | *===========================================================================*/ | 
|---|
| 200 | PUBLIC void get_randomness(source) | 
|---|
| 201 | int source; | 
|---|
| 202 | { | 
|---|
| 203 | /* On machines with the RDTSC (cycle counter read instruction - pentium | 
|---|
| 204 | * and up), use that for high-resolution raw entropy gathering. Otherwise, | 
|---|
| 205 | * use the realtime clock (tick resolution). | 
|---|
| 206 | * | 
|---|
| 207 | * Unfortunately this test is run-time - we don't want to bother with | 
|---|
| 208 | * compiling different kernels for different machines. | 
|---|
| 209 | * | 
|---|
| 210 | * On machines without RDTSC, we use read_clock(). | 
|---|
| 211 | */ | 
|---|
| 212 | int r_next; | 
|---|
| 213 | unsigned long tsc_high, tsc_low; | 
|---|
| 214 |  | 
|---|
| 215 | source %= RANDOM_SOURCES; | 
|---|
| 216 | r_next= krandom.bin[source].r_next; | 
|---|
| 217 | if (machine.processor > 486) { | 
|---|
| 218 | read_tsc(&tsc_high, &tsc_low); | 
|---|
| 219 | krandom.bin[source].r_buf[r_next] = tsc_low; | 
|---|
| 220 | } else { | 
|---|
| 221 | krandom.bin[source].r_buf[r_next] = read_clock(); | 
|---|
| 222 | } | 
|---|
| 223 | if (krandom.bin[source].r_size < RANDOM_ELEMENTS) { | 
|---|
| 224 | krandom.bin[source].r_size ++; | 
|---|
| 225 | } | 
|---|
| 226 | krandom.bin[source].r_next = (r_next + 1 ) % RANDOM_ELEMENTS; | 
|---|
| 227 | } | 
|---|
| 228 |  | 
|---|
| 229 | /*===========================================================================* | 
|---|
| 230 | *                              send_sig                                     * | 
|---|
| 231 | *===========================================================================*/ | 
|---|
| 232 | PUBLIC void send_sig(proc_nr, sig_nr) | 
|---|
| 233 | int proc_nr;                    /* system process to be signalled */ | 
|---|
| 234 | int sig_nr;                     /* signal to be sent, 1 to _NSIG */ | 
|---|
| 235 | { | 
|---|
| 236 | /* Notify a system process about a signal. This is straightforward. Simply | 
|---|
| 237 | * set the signal that is to be delivered in the pending signals map and | 
|---|
| 238 | * send a notification with source SYSTEM. | 
|---|
| 239 | */ | 
|---|
| 240 | register struct proc *rp; | 
|---|
| 241 |  | 
|---|
| 242 | rp = proc_addr(proc_nr); | 
|---|
| 243 | sigaddset(&priv(rp)->s_sig_pending, sig_nr); | 
|---|
| 244 | lock_notify(SYSTEM, proc_nr); | 
|---|
| 245 | } | 
|---|
| 246 |  | 
|---|
| 247 | /*===========================================================================* | 
|---|
| 248 | *                              cause_sig                                    * | 
|---|
| 249 | *===========================================================================*/ | 
|---|
| 250 | PUBLIC void cause_sig(proc_nr, sig_nr) | 
|---|
| 251 | int proc_nr;                    /* process to be signalled */ | 
|---|
| 252 | int sig_nr;                     /* signal to be sent, 1 to _NSIG */ | 
|---|
| 253 | { | 
|---|
| 254 | /* A system process wants to send a signal to a process.  Examples are: | 
|---|
| 255 | *  - HARDWARE wanting to cause a SIGSEGV after a CPU exception | 
|---|
| 256 | *  - TTY wanting to cause SIGINT upon getting a DEL | 
|---|
| 257 | *  - FS wanting to cause SIGPIPE for a broken pipe | 
|---|
| 258 | * Signals are handled by sending a message to PM.  This function handles the | 
|---|
| 259 | * signals and makes sure the PM gets them by sending a notification. The | 
|---|
| 260 | * process being signaled is blocked while PM has not finished all signals | 
|---|
| 261 | * for it. | 
|---|
| 262 | * Race conditions between calls to this function and the system calls that | 
|---|
| 263 | * process pending kernel signals cannot exist. Signal related functions are | 
|---|
| 264 | * only called when a user process causes a CPU exception and from the kernel | 
|---|
| 265 | * process level, which runs to completion. | 
|---|
| 266 | */ | 
|---|
| 267 | register struct proc *rp; | 
|---|
| 268 |  | 
|---|
| 269 | /* Check if the signal is already pending. Process it otherwise. */ | 
|---|
| 270 | rp = proc_addr(proc_nr); | 
|---|
| 271 | if (! sigismember(&rp->p_pending, sig_nr)) { | 
|---|
| 272 | sigaddset(&rp->p_pending, sig_nr); | 
|---|
| 273 | if (! (rp->p_rts_flags & SIGNALED)) {             /* other pending */ | 
|---|
| 274 | if (rp->p_rts_flags == 0) lock_dequeue(rp);   /* make not ready */ | 
|---|
| 275 | rp->p_rts_flags |= SIGNALED | SIG_PENDING;    /* update flags */ | 
|---|
| 276 | send_sig(PM_PROC_NR, SIGKSIG); | 
|---|
| 277 | } | 
|---|
| 278 | } | 
|---|
| 279 | } | 
|---|
| 280 |  | 
|---|
| 281 | /*===========================================================================* | 
|---|
| 282 | *                              umap_local                                   * | 
|---|
| 283 | *===========================================================================*/ | 
|---|
| 284 | PUBLIC phys_bytes umap_local(rp, seg, vir_addr, bytes) | 
|---|
| 285 | register struct proc *rp;       /* pointer to proc table entry for process */ | 
|---|
| 286 | int seg;                        /* T, D, or S segment */ | 
|---|
| 287 | vir_bytes vir_addr;             /* virtual address in bytes within the seg */ | 
|---|
| 288 | vir_bytes bytes;                /* # of bytes to be copied */ | 
|---|
| 289 | { | 
|---|
| 290 | /* Calculate the physical memory address for a given virtual address. */ | 
|---|
| 291 | vir_clicks vc;                /* the virtual address in clicks */ | 
|---|
| 292 | phys_bytes pa;                /* intermediate variables as phys_bytes */ | 
|---|
| 293 | phys_bytes seg_base; | 
|---|
| 294 |  | 
|---|
| 295 | /* If 'seg' is D it could really be S and vice versa.  T really means T. | 
|---|
| 296 | * If the virtual address falls in the gap,  it causes a problem. On the | 
|---|
| 297 | * 8088 it is probably a legal stack reference, since "stackfaults" are | 
|---|
| 298 | * not detected by the hardware.  On 8088s, the gap is called S and | 
|---|
| 299 | * accepted, but on other machines it is called D and rejected. | 
|---|
| 300 | * The Atari ST behaves like the 8088 in this respect. | 
|---|
| 301 | */ | 
|---|
| 302 |  | 
|---|
| 303 | if (bytes <= 0) return( (phys_bytes) 0); | 
|---|
| 304 | if (vir_addr + bytes <= vir_addr) return 0;   /* overflow */ | 
|---|
| 305 | vc = (vir_addr + bytes - 1) >> CLICK_SHIFT;   /* last click of data */ | 
|---|
| 306 |  | 
|---|
| 307 | if (seg != T) | 
|---|
| 308 | seg = (vc < rp->p_memmap[D].mem_vir + rp->p_memmap[D].mem_len ? D : S); | 
|---|
| 309 |  | 
|---|
| 310 | if ((vir_addr>>CLICK_SHIFT) >= rp->p_memmap[seg].mem_vir + | 
|---|
| 311 | rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 ); | 
|---|
| 312 |  | 
|---|
| 313 | if (vc >= rp->p_memmap[seg].mem_vir + | 
|---|
| 314 | rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 ); | 
|---|
| 315 |  | 
|---|
| 316 | seg_base = (phys_bytes) rp->p_memmap[seg].mem_phys; | 
|---|
| 317 | seg_base = seg_base << CLICK_SHIFT;   /* segment origin in bytes */ | 
|---|
| 318 | pa = (phys_bytes) vir_addr; | 
|---|
| 319 | pa -= rp->p_memmap[seg].mem_vir << CLICK_SHIFT; | 
|---|
| 320 | return(seg_base + pa); | 
|---|
| 321 | } | 
|---|
| 322 |  | 
|---|
| 323 | /*===========================================================================* | 
|---|
| 324 | *                              umap_remote                                  * | 
|---|
| 325 | *===========================================================================*/ | 
|---|
| 326 | PUBLIC phys_bytes umap_remote(rp, seg, vir_addr, bytes) | 
|---|
| 327 | register struct proc *rp;       /* pointer to proc table entry for process */ | 
|---|
| 328 | int seg;                        /* index of remote segment */ | 
|---|
| 329 | vir_bytes vir_addr;             /* virtual address in bytes within the seg */ | 
|---|
| 330 | vir_bytes bytes;                /* # of bytes to be copied */ | 
|---|
| 331 | { | 
|---|
| 332 | /* Calculate the physical memory address for a given virtual address. */ | 
|---|
| 333 | struct far_mem *fm; | 
|---|
| 334 |  | 
|---|
| 335 | if (bytes <= 0) return( (phys_bytes) 0); | 
|---|
| 336 | if (seg < 0 || seg >= NR_REMOTE_SEGS) return( (phys_bytes) 0); | 
|---|
| 337 |  | 
|---|
| 338 | fm = &rp->p_priv->s_farmem[seg]; | 
|---|
| 339 | if (! fm->in_use) return( (phys_bytes) 0); | 
|---|
| 340 | if (vir_addr + bytes > fm->mem_len) return( (phys_bytes) 0); | 
|---|
| 341 |  | 
|---|
| 342 | return(fm->mem_phys + (phys_bytes) vir_addr); | 
|---|
| 343 | } | 
|---|
| 344 |  | 
|---|
| 345 | /*===========================================================================* | 
|---|
| 346 | *                              umap_bios                                    * | 
|---|
| 347 | *===========================================================================*/ | 
|---|
| 348 | PUBLIC phys_bytes umap_bios(rp, vir_addr, bytes) | 
|---|
| 349 | register struct proc *rp;       /* pointer to proc table entry for process */ | 
|---|
| 350 | vir_bytes vir_addr;             /* virtual address in BIOS segment */ | 
|---|
| 351 | vir_bytes bytes;                /* # of bytes to be copied */ | 
|---|
| 352 | { | 
|---|
| 353 | /* Calculate the physical memory address at the BIOS. Note: currently, BIOS | 
|---|
| 354 | * address zero (the first BIOS interrupt vector) is not considered as an | 
|---|
| 355 | * error here, but since the physical address will be zero as well, the | 
|---|
| 356 | * calling function will think an error occurred. This is not a problem, | 
|---|
| 357 | * since no one uses the first BIOS interrupt vector. | 
|---|
| 358 | */ | 
|---|
| 359 |  | 
|---|
| 360 | /* Check all acceptable ranges. */ | 
|---|
| 361 | if (vir_addr >= BIOS_MEM_BEGIN && vir_addr + bytes <= BIOS_MEM_END) | 
|---|
| 362 | return (phys_bytes) vir_addr; | 
|---|
| 363 | else if (vir_addr >= BASE_MEM_TOP && vir_addr + bytes <= UPPER_MEM_END) | 
|---|
| 364 | return (phys_bytes) vir_addr; | 
|---|
| 365 | kprintf("Warning, error in umap_bios, virtual address 0x%x\n", vir_addr); | 
|---|
| 366 | return 0; | 
|---|
| 367 | } | 
|---|
| 368 |  | 
|---|
| 369 | /*===========================================================================* | 
|---|
| 370 | *                              virtual_copy                                 * | 
|---|
| 371 | *===========================================================================*/ | 
|---|
| 372 | PUBLIC int virtual_copy(src_addr, dst_addr, bytes) | 
|---|
| 373 | struct vir_addr *src_addr;      /* source virtual address */ | 
|---|
| 374 | struct vir_addr *dst_addr;      /* destination virtual address */ | 
|---|
| 375 | vir_bytes bytes;                /* # of bytes to copy  */ | 
|---|
| 376 | { | 
|---|
| 377 | /* Copy bytes from virtual address src_addr to virtual address dst_addr. | 
|---|
| 378 | * Virtual addresses can be in ABS, LOCAL_SEG, REMOTE_SEG, or BIOS_SEG. | 
|---|
| 379 | */ | 
|---|
| 380 | struct vir_addr *vir_addr[2]; /* virtual source and destination address */ | 
|---|
| 381 | phys_bytes phys_addr[2];      /* absolute source and destination */ | 
|---|
| 382 | int seg_index; | 
|---|
| 383 | int i; | 
|---|
| 384 |  | 
|---|
| 385 | /* Check copy count. */ | 
|---|
| 386 | if (bytes <= 0) return(EDOM); | 
|---|
| 387 |  | 
|---|
| 388 | /* Do some more checks and map virtual addresses to physical addresses. */ | 
|---|
| 389 | vir_addr[_SRC_] = src_addr; | 
|---|
| 390 | vir_addr[_DST_] = dst_addr; | 
|---|
| 391 | for (i=_SRC_; i<=_DST_; i++) { | 
|---|
| 392 |  | 
|---|
| 393 | /* Get physical address. */ | 
|---|
| 394 | switch((vir_addr[i]->segment & SEGMENT_TYPE)) { | 
|---|
| 395 | case LOCAL_SEG: | 
|---|
| 396 | seg_index = vir_addr[i]->segment & SEGMENT_INDEX; | 
|---|
| 397 | phys_addr[i] = umap_local( proc_addr(vir_addr[i]->proc_nr), | 
|---|
| 398 | seg_index, vir_addr[i]->offset, bytes ); | 
|---|
| 399 | break; | 
|---|
| 400 | case REMOTE_SEG: | 
|---|
| 401 | seg_index = vir_addr[i]->segment & SEGMENT_INDEX; | 
|---|
| 402 | phys_addr[i] = umap_remote( proc_addr(vir_addr[i]->proc_nr), | 
|---|
| 403 | seg_index, vir_addr[i]->offset, bytes ); | 
|---|
| 404 | break; | 
|---|
| 405 | case BIOS_SEG: | 
|---|
| 406 | phys_addr[i] = umap_bios( proc_addr(vir_addr[i]->proc_nr), | 
|---|
| 407 | vir_addr[i]->offset, bytes ); | 
|---|
| 408 | break; | 
|---|
| 409 | case PHYS_SEG: | 
|---|
| 410 | phys_addr[i] = vir_addr[i]->offset; | 
|---|
| 411 | break; | 
|---|
| 412 | default: | 
|---|
| 413 | return(EINVAL); | 
|---|
| 414 | } | 
|---|
| 415 |  | 
|---|
| 416 | /* Check if mapping succeeded. */ | 
|---|
| 417 | if (phys_addr[i] <= 0 && vir_addr[i]->segment != PHYS_SEG) | 
|---|
| 418 | return(EFAULT); | 
|---|
| 419 | } | 
|---|
| 420 |  | 
|---|
| 421 | /* Now copy bytes between physical addresseses. */ | 
|---|
| 422 | phys_copy(phys_addr[_SRC_], phys_addr[_DST_], (phys_bytes) bytes); | 
|---|
| 423 | return(OK); | 
|---|
| 424 | } | 
|---|
| 425 |  | 
|---|