1 | /* This task provides an interface between the kernel and user-space system
|
---|
2 | * processes. System services can be accessed by doing a kernel call. Kernel
|
---|
3 | * calls are transformed into request messages, which are handled by this
|
---|
4 | * task. By convention, a sys_call() is transformed in a SYS_CALL request
|
---|
5 | * message that is handled in a function named do_call().
|
---|
6 | *
|
---|
7 | * A private call vector is used to map all kernel calls to the functions that
|
---|
8 | * handle them. The actual handler functions are contained in separate files
|
---|
9 | * to keep this file clean. The call vector is used in the system task's main
|
---|
10 | * loop to handle all incoming requests.
|
---|
11 | *
|
---|
12 | * In addition to the main sys_task() entry point, which starts the main loop,
|
---|
13 | * there are several other minor entry points:
|
---|
14 | * get_priv: assign privilege structure to user or system process
|
---|
15 | * send_sig: send a signal directly to a system process
|
---|
16 | * cause_sig: take action to cause a signal to occur via PM
|
---|
17 | * umap_local: map virtual address in LOCAL_SEG to physical
|
---|
18 | * umap_remote: map virtual address in REMOTE_SEG to physical
|
---|
19 | * umap_bios: map virtual address in BIOS_SEG to physical
|
---|
20 | * virtual_copy: copy bytes from one virtual address to another
|
---|
21 | * get_randomness: accumulate randomness in a buffer
|
---|
22 | *
|
---|
23 | * Changes:
|
---|
24 | * Aug 04, 2005 check if kernel call is allowed (Jorrit N. Herder)
|
---|
25 | * Jul 20, 2005 send signal to services with message (Jorrit N. Herder)
|
---|
26 | * Jan 15, 2005 new, generalized virtual copy function (Jorrit N. Herder)
|
---|
27 | * Oct 10, 2004 dispatch system calls from call vector (Jorrit N. Herder)
|
---|
28 | * Sep 30, 2004 source code documentation updated (Jorrit N. Herder)
|
---|
29 | */
|
---|
30 |
|
---|
31 | #include "kernel.h"
|
---|
32 | #include "system.h"
|
---|
33 | #include <stdlib.h>
|
---|
34 | #include <signal.h>
|
---|
35 | #include <unistd.h>
|
---|
36 | #include <sys/sigcontext.h>
|
---|
37 | #include <ibm/memory.h>
|
---|
38 | #include "protect.h"
|
---|
39 |
|
---|
40 | /* Declaration of the call vector that defines the mapping of kernel calls
|
---|
41 | * to handler functions. The vector is initialized in sys_init() with map(),
|
---|
42 | * which makes sure the kernel call numbers are ok. No space is allocated,
|
---|
43 | * because the dummy is declared extern. If an illegal call is given, the
|
---|
44 | * array size will be negative and this won't compile.
|
---|
45 | */
|
---|
46 | PUBLIC int (*call_vec[NR_SYS_CALLS])(message *m_ptr);
|
---|
47 |
|
---|
48 | #define map(call_nr, handler) \
|
---|
49 | {extern int dummy[NR_SYS_CALLS>(unsigned)(call_nr-KERNEL_CALL) ? 1:-1];} \
|
---|
50 | call_vec[(call_nr-KERNEL_CALL)] = (handler)
|
---|
51 |
|
---|
52 | FORWARD _PROTOTYPE( void initialize, (void));
|
---|
53 |
|
---|
54 | /*===========================================================================*
|
---|
55 | * sys_task *
|
---|
56 | *===========================================================================*/
|
---|
57 | PUBLIC void sys_task()
|
---|
58 | {
|
---|
59 | /* Main entry point of sys_task. Get the message and dispatch on type. */
|
---|
60 | static message m;
|
---|
61 | register int result;
|
---|
62 | register struct proc *caller_ptr;
|
---|
63 | unsigned int call_nr;
|
---|
64 | int s;
|
---|
65 |
|
---|
66 | /* Initialize the system task. */
|
---|
67 | initialize();
|
---|
68 |
|
---|
69 | while (TRUE) {
|
---|
70 | /* Get work. Block and wait until a request message arrives. */
|
---|
71 | receive(ANY, &m);
|
---|
72 | call_nr = (unsigned) m.m_type - KERNEL_CALL;
|
---|
73 | caller_ptr = proc_addr(m.m_source);
|
---|
74 |
|
---|
75 | /* See if the caller made a valid request and try to handle it. */
|
---|
76 | if (! (priv(caller_ptr)->s_call_mask & (1<<call_nr))) {
|
---|
77 | kprintf("SYSTEM: request %d from %d denied.\n", call_nr,m.m_source);
|
---|
78 | result = ECALLDENIED; /* illegal message type */
|
---|
79 | } else if (call_nr >= NR_SYS_CALLS) { /* check call number */
|
---|
80 | kprintf("SYSTEM: illegal request %d from %d.\n", call_nr,m.m_source);
|
---|
81 | result = EBADREQUEST; /* illegal message type */
|
---|
82 | }
|
---|
83 | else {
|
---|
84 | result = (*call_vec[call_nr])(&m); /* handle the kernel call */
|
---|
85 | }
|
---|
86 |
|
---|
87 | /* Send a reply, unless inhibited by a handler function. Use the kernel
|
---|
88 | * function lock_send() to prevent a system call trap. The destination
|
---|
89 | * is known to be blocked waiting for a message.
|
---|
90 | */
|
---|
91 | if (result != EDONTREPLY) {
|
---|
92 | m.m_type = result; /* report status of call */
|
---|
93 | if (OK != (s=lock_send(m.m_source, &m))) {
|
---|
94 | kprintf("SYSTEM, reply to %d failed: %d\n", m.m_source, s);
|
---|
95 | }
|
---|
96 | }
|
---|
97 | }
|
---|
98 | }
|
---|
99 |
|
---|
100 | /*===========================================================================*
|
---|
101 | * initialize *
|
---|
102 | *===========================================================================*/
|
---|
103 | PRIVATE void initialize(void)
|
---|
104 | {
|
---|
105 | register struct priv *sp;
|
---|
106 | int i;
|
---|
107 |
|
---|
108 | /* Initialize IRQ handler hooks. Mark all hooks available. */
|
---|
109 | for (i=0; i<NR_IRQ_HOOKS; i++) {
|
---|
110 | irq_hooks[i].proc_nr = NONE;
|
---|
111 | }
|
---|
112 |
|
---|
113 | /* Initialize all alarm timers for all processes. */
|
---|
114 | for (sp=BEG_PRIV_ADDR; sp < END_PRIV_ADDR; sp++) {
|
---|
115 | tmr_inittimer(&(sp->s_alarm_timer));
|
---|
116 | }
|
---|
117 |
|
---|
118 | /* Initialize the call vector to a safe default handler. Some kernel calls
|
---|
119 | * may be disabled or nonexistant. Then explicitly map known calls to their
|
---|
120 | * handler functions. This is done with a macro that gives a compile error
|
---|
121 | * if an illegal call number is used. The ordering is not important here.
|
---|
122 | */
|
---|
123 | for (i=0; i<NR_SYS_CALLS; i++) {
|
---|
124 | call_vec[i] = do_unused;
|
---|
125 | }
|
---|
126 |
|
---|
127 | /* Process management. */
|
---|
128 | map(SYS_FORK, do_fork); /* a process forked a new process */
|
---|
129 | map(SYS_EXEC, do_exec); /* update process after execute */
|
---|
130 | map(SYS_EXIT, do_exit); /* clean up after process exit */
|
---|
131 | map(SYS_NICE, do_nice); /* set scheduling priority */
|
---|
132 | map(SYS_PRIVCTL, do_privctl); /* system privileges control */
|
---|
133 | map(SYS_TRACE, do_trace); /* request a trace operation */
|
---|
134 |
|
---|
135 | /* Signal handling. */
|
---|
136 | map(SYS_KILL, do_kill); /* cause a process to be signaled */
|
---|
137 | map(SYS_GETKSIG, do_getksig); /* PM checks for pending signals */
|
---|
138 | map(SYS_ENDKSIG, do_endksig); /* PM finished processing signal */
|
---|
139 | map(SYS_SIGSEND, do_sigsend); /* start POSIX-style signal */
|
---|
140 | map(SYS_SIGRETURN, do_sigreturn); /* return from POSIX-style signal */
|
---|
141 |
|
---|
142 | /* Device I/O. */
|
---|
143 | map(SYS_IRQCTL, do_irqctl); /* interrupt control operations */
|
---|
144 | map(SYS_DEVIO, do_devio); /* inb, inw, inl, outb, outw, outl */
|
---|
145 | map(SYS_SDEVIO, do_sdevio); /* phys_insb, _insw, _outsb, _outsw */
|
---|
146 | map(SYS_VDEVIO, do_vdevio); /* vector with devio requests */
|
---|
147 | map(SYS_INT86, do_int86); /* real-mode BIOS calls */
|
---|
148 |
|
---|
149 | /* Memory management. */
|
---|
150 | map(SYS_NEWMAP, do_newmap); /* set up a process memory map */
|
---|
151 | map(SYS_SEGCTL, do_segctl); /* add segment and get selector */
|
---|
152 | map(SYS_MEMSET, do_memset); /* write char to memory area */
|
---|
153 |
|
---|
154 | /* Copying. */
|
---|
155 | map(SYS_UMAP, do_umap); /* map virtual to physical address */
|
---|
156 | map(SYS_VIRCOPY, do_vircopy); /* use pure virtual addressing */
|
---|
157 | map(SYS_PHYSCOPY, do_physcopy); /* use physical addressing */
|
---|
158 | map(SYS_VIRVCOPY, do_virvcopy); /* vector with copy requests */
|
---|
159 | map(SYS_PHYSVCOPY, do_physvcopy); /* vector with copy requests */
|
---|
160 |
|
---|
161 | /* Clock functionality. */
|
---|
162 | map(SYS_TIMES, do_times); /* get uptime and process times */
|
---|
163 | map(SYS_SETALARM, do_setalarm); /* schedule a synchronous alarm */
|
---|
164 |
|
---|
165 | /* System control. */
|
---|
166 | map(SYS_ABORT, do_abort); /* abort MINIX */
|
---|
167 | map(SYS_GETINFO, do_getinfo); /* request system information */
|
---|
168 | }
|
---|
169 |
|
---|
170 | /*===========================================================================*
|
---|
171 | * get_priv *
|
---|
172 | *===========================================================================*/
|
---|
173 | PUBLIC int get_priv(rc, proc_type)
|
---|
174 | register struct proc *rc; /* new (child) process pointer */
|
---|
175 | int proc_type; /* system or user process flag */
|
---|
176 | {
|
---|
177 | /* Get a privilege structure. All user processes share the same privilege
|
---|
178 | * structure. System processes get their own privilege structure.
|
---|
179 | */
|
---|
180 | register struct priv *sp; /* privilege structure */
|
---|
181 |
|
---|
182 | if (proc_type == SYS_PROC) { /* find a new slot */
|
---|
183 | for (sp = BEG_PRIV_ADDR; sp < END_PRIV_ADDR; ++sp)
|
---|
184 | if (sp->s_proc_nr == NONE && sp->s_id != USER_PRIV_ID) break;
|
---|
185 | if (sp->s_proc_nr != NONE) return(ENOSPC);
|
---|
186 | rc->p_priv = sp; /* assign new slot */
|
---|
187 | rc->p_priv->s_proc_nr = proc_nr(rc); /* set association */
|
---|
188 | rc->p_priv->s_flags = SYS_PROC; /* mark as privileged */
|
---|
189 | } else {
|
---|
190 | rc->p_priv = &priv[USER_PRIV_ID]; /* use shared slot */
|
---|
191 | rc->p_priv->s_proc_nr = INIT_PROC_NR; /* set association */
|
---|
192 | rc->p_priv->s_flags = 0; /* no initial flags */
|
---|
193 | }
|
---|
194 | return(OK);
|
---|
195 | }
|
---|
196 |
|
---|
197 | /*===========================================================================*
|
---|
198 | * get_randomness *
|
---|
199 | *===========================================================================*/
|
---|
200 | PUBLIC void get_randomness(source)
|
---|
201 | int source;
|
---|
202 | {
|
---|
203 | /* On machines with the RDTSC (cycle counter read instruction - pentium
|
---|
204 | * and up), use that for high-resolution raw entropy gathering. Otherwise,
|
---|
205 | * use the realtime clock (tick resolution).
|
---|
206 | *
|
---|
207 | * Unfortunately this test is run-time - we don't want to bother with
|
---|
208 | * compiling different kernels for different machines.
|
---|
209 | *
|
---|
210 | * On machines without RDTSC, we use read_clock().
|
---|
211 | */
|
---|
212 | int r_next;
|
---|
213 | unsigned long tsc_high, tsc_low;
|
---|
214 |
|
---|
215 | source %= RANDOM_SOURCES;
|
---|
216 | r_next= krandom.bin[source].r_next;
|
---|
217 | if (machine.processor > 486) {
|
---|
218 | read_tsc(&tsc_high, &tsc_low);
|
---|
219 | krandom.bin[source].r_buf[r_next] = tsc_low;
|
---|
220 | } else {
|
---|
221 | krandom.bin[source].r_buf[r_next] = read_clock();
|
---|
222 | }
|
---|
223 | if (krandom.bin[source].r_size < RANDOM_ELEMENTS) {
|
---|
224 | krandom.bin[source].r_size ++;
|
---|
225 | }
|
---|
226 | krandom.bin[source].r_next = (r_next + 1 ) % RANDOM_ELEMENTS;
|
---|
227 | }
|
---|
228 |
|
---|
229 | /*===========================================================================*
|
---|
230 | * send_sig *
|
---|
231 | *===========================================================================*/
|
---|
232 | PUBLIC void send_sig(proc_nr, sig_nr)
|
---|
233 | int proc_nr; /* system process to be signalled */
|
---|
234 | int sig_nr; /* signal to be sent, 1 to _NSIG */
|
---|
235 | {
|
---|
236 | /* Notify a system process about a signal. This is straightforward. Simply
|
---|
237 | * set the signal that is to be delivered in the pending signals map and
|
---|
238 | * send a notification with source SYSTEM.
|
---|
239 | */
|
---|
240 | register struct proc *rp;
|
---|
241 |
|
---|
242 | rp = proc_addr(proc_nr);
|
---|
243 | sigaddset(&priv(rp)->s_sig_pending, sig_nr);
|
---|
244 | lock_notify(SYSTEM, proc_nr);
|
---|
245 | }
|
---|
246 |
|
---|
247 | /*===========================================================================*
|
---|
248 | * cause_sig *
|
---|
249 | *===========================================================================*/
|
---|
250 | PUBLIC void cause_sig(proc_nr, sig_nr)
|
---|
251 | int proc_nr; /* process to be signalled */
|
---|
252 | int sig_nr; /* signal to be sent, 1 to _NSIG */
|
---|
253 | {
|
---|
254 | /* A system process wants to send a signal to a process. Examples are:
|
---|
255 | * - HARDWARE wanting to cause a SIGSEGV after a CPU exception
|
---|
256 | * - TTY wanting to cause SIGINT upon getting a DEL
|
---|
257 | * - FS wanting to cause SIGPIPE for a broken pipe
|
---|
258 | * Signals are handled by sending a message to PM. This function handles the
|
---|
259 | * signals and makes sure the PM gets them by sending a notification. The
|
---|
260 | * process being signaled is blocked while PM has not finished all signals
|
---|
261 | * for it.
|
---|
262 | * Race conditions between calls to this function and the system calls that
|
---|
263 | * process pending kernel signals cannot exist. Signal related functions are
|
---|
264 | * only called when a user process causes a CPU exception and from the kernel
|
---|
265 | * process level, which runs to completion.
|
---|
266 | */
|
---|
267 | register struct proc *rp;
|
---|
268 |
|
---|
269 | /* Check if the signal is already pending. Process it otherwise. */
|
---|
270 | rp = proc_addr(proc_nr);
|
---|
271 | if (! sigismember(&rp->p_pending, sig_nr)) {
|
---|
272 | sigaddset(&rp->p_pending, sig_nr);
|
---|
273 | if (! (rp->p_rts_flags & SIGNALED)) { /* other pending */
|
---|
274 | if (rp->p_rts_flags == 0) lock_dequeue(rp); /* make not ready */
|
---|
275 | rp->p_rts_flags |= SIGNALED | SIG_PENDING; /* update flags */
|
---|
276 | send_sig(PM_PROC_NR, SIGKSIG);
|
---|
277 | }
|
---|
278 | }
|
---|
279 | }
|
---|
280 |
|
---|
281 | /*===========================================================================*
|
---|
282 | * umap_local *
|
---|
283 | *===========================================================================*/
|
---|
284 | PUBLIC phys_bytes umap_local(rp, seg, vir_addr, bytes)
|
---|
285 | register struct proc *rp; /* pointer to proc table entry for process */
|
---|
286 | int seg; /* T, D, or S segment */
|
---|
287 | vir_bytes vir_addr; /* virtual address in bytes within the seg */
|
---|
288 | vir_bytes bytes; /* # of bytes to be copied */
|
---|
289 | {
|
---|
290 | /* Calculate the physical memory address for a given virtual address. */
|
---|
291 | vir_clicks vc; /* the virtual address in clicks */
|
---|
292 | phys_bytes pa; /* intermediate variables as phys_bytes */
|
---|
293 | phys_bytes seg_base;
|
---|
294 |
|
---|
295 | /* If 'seg' is D it could really be S and vice versa. T really means T.
|
---|
296 | * If the virtual address falls in the gap, it causes a problem. On the
|
---|
297 | * 8088 it is probably a legal stack reference, since "stackfaults" are
|
---|
298 | * not detected by the hardware. On 8088s, the gap is called S and
|
---|
299 | * accepted, but on other machines it is called D and rejected.
|
---|
300 | * The Atari ST behaves like the 8088 in this respect.
|
---|
301 | */
|
---|
302 |
|
---|
303 | if (bytes <= 0) return( (phys_bytes) 0);
|
---|
304 | if (vir_addr + bytes <= vir_addr) return 0; /* overflow */
|
---|
305 | vc = (vir_addr + bytes - 1) >> CLICK_SHIFT; /* last click of data */
|
---|
306 |
|
---|
307 | if (seg != T)
|
---|
308 | seg = (vc < rp->p_memmap[D].mem_vir + rp->p_memmap[D].mem_len ? D : S);
|
---|
309 |
|
---|
310 | if ((vir_addr>>CLICK_SHIFT) >= rp->p_memmap[seg].mem_vir +
|
---|
311 | rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 );
|
---|
312 |
|
---|
313 | if (vc >= rp->p_memmap[seg].mem_vir +
|
---|
314 | rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 );
|
---|
315 |
|
---|
316 | seg_base = (phys_bytes) rp->p_memmap[seg].mem_phys;
|
---|
317 | seg_base = seg_base << CLICK_SHIFT; /* segment origin in bytes */
|
---|
318 | pa = (phys_bytes) vir_addr;
|
---|
319 | pa -= rp->p_memmap[seg].mem_vir << CLICK_SHIFT;
|
---|
320 | return(seg_base + pa);
|
---|
321 | }
|
---|
322 |
|
---|
323 | /*===========================================================================*
|
---|
324 | * umap_remote *
|
---|
325 | *===========================================================================*/
|
---|
326 | PUBLIC phys_bytes umap_remote(rp, seg, vir_addr, bytes)
|
---|
327 | register struct proc *rp; /* pointer to proc table entry for process */
|
---|
328 | int seg; /* index of remote segment */
|
---|
329 | vir_bytes vir_addr; /* virtual address in bytes within the seg */
|
---|
330 | vir_bytes bytes; /* # of bytes to be copied */
|
---|
331 | {
|
---|
332 | /* Calculate the physical memory address for a given virtual address. */
|
---|
333 | struct far_mem *fm;
|
---|
334 |
|
---|
335 | if (bytes <= 0) return( (phys_bytes) 0);
|
---|
336 | if (seg < 0 || seg >= NR_REMOTE_SEGS) return( (phys_bytes) 0);
|
---|
337 |
|
---|
338 | fm = &rp->p_priv->s_farmem[seg];
|
---|
339 | if (! fm->in_use) return( (phys_bytes) 0);
|
---|
340 | if (vir_addr + bytes > fm->mem_len) return( (phys_bytes) 0);
|
---|
341 |
|
---|
342 | return(fm->mem_phys + (phys_bytes) vir_addr);
|
---|
343 | }
|
---|
344 |
|
---|
345 | /*===========================================================================*
|
---|
346 | * umap_bios *
|
---|
347 | *===========================================================================*/
|
---|
348 | PUBLIC phys_bytes umap_bios(rp, vir_addr, bytes)
|
---|
349 | register struct proc *rp; /* pointer to proc table entry for process */
|
---|
350 | vir_bytes vir_addr; /* virtual address in BIOS segment */
|
---|
351 | vir_bytes bytes; /* # of bytes to be copied */
|
---|
352 | {
|
---|
353 | /* Calculate the physical memory address at the BIOS. Note: currently, BIOS
|
---|
354 | * address zero (the first BIOS interrupt vector) is not considered as an
|
---|
355 | * error here, but since the physical address will be zero as well, the
|
---|
356 | * calling function will think an error occurred. This is not a problem,
|
---|
357 | * since no one uses the first BIOS interrupt vector.
|
---|
358 | */
|
---|
359 |
|
---|
360 | /* Check all acceptable ranges. */
|
---|
361 | if (vir_addr >= BIOS_MEM_BEGIN && vir_addr + bytes <= BIOS_MEM_END)
|
---|
362 | return (phys_bytes) vir_addr;
|
---|
363 | else if (vir_addr >= BASE_MEM_TOP && vir_addr + bytes <= UPPER_MEM_END)
|
---|
364 | return (phys_bytes) vir_addr;
|
---|
365 | kprintf("Warning, error in umap_bios, virtual address 0x%x\n", vir_addr);
|
---|
366 | return 0;
|
---|
367 | }
|
---|
368 |
|
---|
369 | /*===========================================================================*
|
---|
370 | * virtual_copy *
|
---|
371 | *===========================================================================*/
|
---|
372 | PUBLIC int virtual_copy(src_addr, dst_addr, bytes)
|
---|
373 | struct vir_addr *src_addr; /* source virtual address */
|
---|
374 | struct vir_addr *dst_addr; /* destination virtual address */
|
---|
375 | vir_bytes bytes; /* # of bytes to copy */
|
---|
376 | {
|
---|
377 | /* Copy bytes from virtual address src_addr to virtual address dst_addr.
|
---|
378 | * Virtual addresses can be in ABS, LOCAL_SEG, REMOTE_SEG, or BIOS_SEG.
|
---|
379 | */
|
---|
380 | struct vir_addr *vir_addr[2]; /* virtual source and destination address */
|
---|
381 | phys_bytes phys_addr[2]; /* absolute source and destination */
|
---|
382 | int seg_index;
|
---|
383 | int i;
|
---|
384 |
|
---|
385 | /* Check copy count. */
|
---|
386 | if (bytes <= 0) return(EDOM);
|
---|
387 |
|
---|
388 | /* Do some more checks and map virtual addresses to physical addresses. */
|
---|
389 | vir_addr[_SRC_] = src_addr;
|
---|
390 | vir_addr[_DST_] = dst_addr;
|
---|
391 | for (i=_SRC_; i<=_DST_; i++) {
|
---|
392 |
|
---|
393 | /* Get physical address. */
|
---|
394 | switch((vir_addr[i]->segment & SEGMENT_TYPE)) {
|
---|
395 | case LOCAL_SEG:
|
---|
396 | seg_index = vir_addr[i]->segment & SEGMENT_INDEX;
|
---|
397 | phys_addr[i] = umap_local( proc_addr(vir_addr[i]->proc_nr),
|
---|
398 | seg_index, vir_addr[i]->offset, bytes );
|
---|
399 | break;
|
---|
400 | case REMOTE_SEG:
|
---|
401 | seg_index = vir_addr[i]->segment & SEGMENT_INDEX;
|
---|
402 | phys_addr[i] = umap_remote( proc_addr(vir_addr[i]->proc_nr),
|
---|
403 | seg_index, vir_addr[i]->offset, bytes );
|
---|
404 | break;
|
---|
405 | case BIOS_SEG:
|
---|
406 | phys_addr[i] = umap_bios( proc_addr(vir_addr[i]->proc_nr),
|
---|
407 | vir_addr[i]->offset, bytes );
|
---|
408 | break;
|
---|
409 | case PHYS_SEG:
|
---|
410 | phys_addr[i] = vir_addr[i]->offset;
|
---|
411 | break;
|
---|
412 | default:
|
---|
413 | return(EINVAL);
|
---|
414 | }
|
---|
415 |
|
---|
416 | /* Check if mapping succeeded. */
|
---|
417 | if (phys_addr[i] <= 0 && vir_addr[i]->segment != PHYS_SEG)
|
---|
418 | return(EFAULT);
|
---|
419 | }
|
---|
420 |
|
---|
421 | /* Now copy bytes between physical addresseses. */
|
---|
422 | phys_copy(phys_addr[_SRC_], phys_addr[_DST_], (phys_bytes) bytes);
|
---|
423 | return(OK);
|
---|
424 | }
|
---|
425 |
|
---|