1 | /* This file handles the EXEC system call. It performs the work as follows:
|
---|
2 | * - see if the permissions allow the file to be executed
|
---|
3 | * - read the header and extract the sizes
|
---|
4 | * - fetch the initial args and environment from the user space
|
---|
5 | * - allocate the memory for the new process
|
---|
6 | * - copy the initial stack from PM to the process
|
---|
7 | * - read in the text and data segments and copy to the process
|
---|
8 | * - take care of setuid and setgid bits
|
---|
9 | * - fix up 'mproc' table
|
---|
10 | * - tell kernel about EXEC
|
---|
11 | * - save offset to initial argc (for ps)
|
---|
12 | *
|
---|
13 | * The entry points into this file are:
|
---|
14 | * do_exec: perform the EXEC system call
|
---|
15 | * rw_seg: read or write a segment from or to a file
|
---|
16 | * find_share: find a process whose text segment can be shared
|
---|
17 | */
|
---|
18 |
|
---|
19 | #include "pm.h"
|
---|
20 | #include <sys/stat.h>
|
---|
21 | #include <minix/callnr.h>
|
---|
22 | #include <minix/com.h>
|
---|
23 | #include <a.out.h>
|
---|
24 | #include <signal.h>
|
---|
25 | #include <string.h>
|
---|
26 | #include "mproc.h"
|
---|
27 | #include "param.h"
|
---|
28 |
|
---|
29 | FORWARD _PROTOTYPE( int new_mem, (struct mproc *sh_mp, vir_bytes text_bytes,
|
---|
30 | vir_bytes data_bytes, vir_bytes bss_bytes,
|
---|
31 | vir_bytes stk_bytes, phys_bytes tot_bytes) );
|
---|
32 | FORWARD _PROTOTYPE( void patch_ptr, (char stack[ARG_MAX], vir_bytes base) );
|
---|
33 | FORWARD _PROTOTYPE( int insert_arg, (char stack[ARG_MAX],
|
---|
34 | vir_bytes *stk_bytes, char *arg, int replace) );
|
---|
35 | FORWARD _PROTOTYPE( char *patch_stack, (int fd, char stack[ARG_MAX],
|
---|
36 | vir_bytes *stk_bytes, char *script) );
|
---|
37 | FORWARD _PROTOTYPE( int read_header, (int fd, int *ft, vir_bytes *text_bytes,
|
---|
38 | vir_bytes *data_bytes, vir_bytes *bss_bytes,
|
---|
39 | phys_bytes *tot_bytes, long *sym_bytes, vir_clicks sc,
|
---|
40 | vir_bytes *pc) );
|
---|
41 |
|
---|
42 | #define ESCRIPT (-2000) /* Returned by read_header for a #! script. */
|
---|
43 | #define PTRSIZE sizeof(char *) /* Size of pointers in argv[] and envp[]. */
|
---|
44 |
|
---|
45 | /*===========================================================================*
|
---|
46 | * do_exec *
|
---|
47 | *===========================================================================*/
|
---|
48 | PUBLIC int do_exec()
|
---|
49 | {
|
---|
50 | /* Perform the execve(name, argv, envp) call. The user library builds a
|
---|
51 | * complete stack image, including pointers, args, environ, etc. The stack
|
---|
52 | * is copied to a buffer inside PM, and then to the new core image.
|
---|
53 | */
|
---|
54 | register struct mproc *rmp;
|
---|
55 | struct mproc *sh_mp;
|
---|
56 | int m, r, fd, ft, sn;
|
---|
57 | static char mbuf[ARG_MAX]; /* buffer for stack and zeroes */
|
---|
58 | static char name_buf[PATH_MAX]; /* the name of the file to exec */
|
---|
59 | char *new_sp, *name, *basename;
|
---|
60 | vir_bytes src, dst, text_bytes, data_bytes, bss_bytes, stk_bytes, vsp;
|
---|
61 | phys_bytes tot_bytes; /* total space for program, including gap */
|
---|
62 | long sym_bytes;
|
---|
63 | vir_clicks sc;
|
---|
64 | struct stat s_buf[2], *s_p;
|
---|
65 | vir_bytes pc;
|
---|
66 |
|
---|
67 | /* Do some validity checks. */
|
---|
68 | rmp = mp;
|
---|
69 | stk_bytes = (vir_bytes) m_in.stack_bytes;
|
---|
70 | if (stk_bytes > ARG_MAX) return(ENOMEM); /* stack too big */
|
---|
71 | if (m_in.exec_len <= 0 || m_in.exec_len > PATH_MAX) return(EINVAL);
|
---|
72 |
|
---|
73 | /* Get the exec file name and see if the file is executable. */
|
---|
74 | src = (vir_bytes) m_in.exec_name;
|
---|
75 | dst = (vir_bytes) name_buf;
|
---|
76 | r = sys_datacopy(who, (vir_bytes) src,
|
---|
77 | PM_PROC_NR, (vir_bytes) dst, (phys_bytes) m_in.exec_len);
|
---|
78 | if (r != OK) return(r); /* file name not in user data segment */
|
---|
79 |
|
---|
80 | /* Fetch the stack from the user before destroying the old core image. */
|
---|
81 | src = (vir_bytes) m_in.stack_ptr;
|
---|
82 | dst = (vir_bytes) mbuf;
|
---|
83 | r = sys_datacopy(who, (vir_bytes) src,
|
---|
84 | PM_PROC_NR, (vir_bytes) dst, (phys_bytes)stk_bytes);
|
---|
85 | /* can't fetch stack (e.g. bad virtual addr) */
|
---|
86 | if (r != OK) return(EACCES);
|
---|
87 |
|
---|
88 | r = 0; /* r = 0 (first attempt), or 1 (interpreted script) */
|
---|
89 | name = name_buf; /* name of file to exec. */
|
---|
90 | do {
|
---|
91 | s_p = &s_buf[r];
|
---|
92 | tell_fs(CHDIR, who, FALSE, 0); /* switch to the user's FS environ */
|
---|
93 | fd = allowed(name, s_p, X_BIT); /* is file executable? */
|
---|
94 | if (fd < 0) return(fd); /* file was not executable */
|
---|
95 |
|
---|
96 | /* Read the file header and extract the segment sizes. */
|
---|
97 | sc = (stk_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
|
---|
98 |
|
---|
99 | m = read_header(fd, &ft, &text_bytes, &data_bytes, &bss_bytes,
|
---|
100 | &tot_bytes, &sym_bytes, sc, &pc);
|
---|
101 | if (m != ESCRIPT || ++r > 1) break;
|
---|
102 | } while ((name = patch_stack(fd, mbuf, &stk_bytes, name_buf)) != NULL);
|
---|
103 |
|
---|
104 | if (m < 0) {
|
---|
105 | close(fd); /* something wrong with header */
|
---|
106 | return(stk_bytes > ARG_MAX ? ENOMEM : ENOEXEC);
|
---|
107 | }
|
---|
108 |
|
---|
109 | /* Can the process' text be shared with that of one already running? */
|
---|
110 | sh_mp = find_share(rmp, s_p->st_ino, s_p->st_dev, s_p->st_ctime);
|
---|
111 |
|
---|
112 | /* Allocate new memory and release old memory. Fix map and tell kernel. */
|
---|
113 | r = new_mem(sh_mp, text_bytes, data_bytes, bss_bytes, stk_bytes, tot_bytes);
|
---|
114 | if (r != OK) {
|
---|
115 | close(fd); /* insufficient core or program too big */
|
---|
116 | return(r);
|
---|
117 | }
|
---|
118 |
|
---|
119 | /* Save file identification to allow it to be shared. */
|
---|
120 | rmp->mp_ino = s_p->st_ino;
|
---|
121 | rmp->mp_dev = s_p->st_dev;
|
---|
122 | rmp->mp_ctime = s_p->st_ctime;
|
---|
123 |
|
---|
124 | /* Patch up stack and copy it from PM to new core image. */
|
---|
125 | vsp = (vir_bytes) rmp->mp_seg[S].mem_vir << CLICK_SHIFT;
|
---|
126 | vsp += (vir_bytes) rmp->mp_seg[S].mem_len << CLICK_SHIFT;
|
---|
127 | vsp -= stk_bytes;
|
---|
128 | patch_ptr(mbuf, vsp);
|
---|
129 | src = (vir_bytes) mbuf;
|
---|
130 | r = sys_datacopy(PM_PROC_NR, (vir_bytes) src,
|
---|
131 | who, (vir_bytes) vsp, (phys_bytes)stk_bytes);
|
---|
132 | if (r != OK) panic(__FILE__,"do_exec stack copy err on", who);
|
---|
133 |
|
---|
134 | /* Read in text and data segments. */
|
---|
135 | if (sh_mp != NULL) {
|
---|
136 | lseek(fd, (off_t) text_bytes, SEEK_CUR); /* shared: skip text */
|
---|
137 | } else {
|
---|
138 | rw_seg(0, fd, who, T, text_bytes);
|
---|
139 | }
|
---|
140 | rw_seg(0, fd, who, D, data_bytes);
|
---|
141 |
|
---|
142 | close(fd); /* don't need exec file any more */
|
---|
143 |
|
---|
144 | /* Take care of setuid/setgid bits. */
|
---|
145 | if ((rmp->mp_flags & TRACED) == 0) { /* suppress if tracing */
|
---|
146 | if (s_buf[0].st_mode & I_SET_UID_BIT) {
|
---|
147 | rmp->mp_effuid = s_buf[0].st_uid;
|
---|
148 | tell_fs(SETUID,who, (int)rmp->mp_realuid, (int)rmp->mp_effuid);
|
---|
149 | }
|
---|
150 | if (s_buf[0].st_mode & I_SET_GID_BIT) {
|
---|
151 | rmp->mp_effgid = s_buf[0].st_gid;
|
---|
152 | tell_fs(SETGID,who, (int)rmp->mp_realgid, (int)rmp->mp_effgid);
|
---|
153 | }
|
---|
154 | }
|
---|
155 |
|
---|
156 | /* Save offset to initial argc (for ps) */
|
---|
157 | rmp->mp_procargs = vsp;
|
---|
158 |
|
---|
159 | /* Fix 'mproc' fields, tell kernel that exec is done, reset caught sigs. */
|
---|
160 | for (sn = 1; sn <= _NSIG; sn++) {
|
---|
161 | if (sigismember(&rmp->mp_catch, sn)) {
|
---|
162 | sigdelset(&rmp->mp_catch, sn);
|
---|
163 | rmp->mp_sigact[sn].sa_handler = SIG_DFL;
|
---|
164 | sigemptyset(&rmp->mp_sigact[sn].sa_mask);
|
---|
165 | }
|
---|
166 | }
|
---|
167 |
|
---|
168 | rmp->mp_flags &= ~SEPARATE; /* turn off SEPARATE bit */
|
---|
169 | rmp->mp_flags |= ft; /* turn it on for separate I & D files */
|
---|
170 | new_sp = (char *) vsp;
|
---|
171 |
|
---|
172 | tell_fs(EXEC, who, 0, 0); /* allow FS to handle FD_CLOEXEC files */
|
---|
173 |
|
---|
174 | /* System will save command line for debugging, ps(1) output, etc. */
|
---|
175 | basename = strrchr(name, '/');
|
---|
176 | if (basename == NULL) basename = name; else basename++;
|
---|
177 | strncpy(rmp->mp_name, basename, PROC_NAME_LEN-1);
|
---|
178 | rmp->mp_name[PROC_NAME_LEN] = '\0';
|
---|
179 | sys_exec(who, new_sp, basename, pc);
|
---|
180 |
|
---|
181 | /* Cause a signal if this process is traced. */
|
---|
182 | if (rmp->mp_flags & TRACED) check_sig(rmp->mp_pid, SIGTRAP);
|
---|
183 |
|
---|
184 | return(SUSPEND); /* no reply, new program just runs */
|
---|
185 | }
|
---|
186 |
|
---|
187 | /*===========================================================================*
|
---|
188 | * read_header *
|
---|
189 | *===========================================================================*/
|
---|
190 | PRIVATE int read_header(fd, ft, text_bytes, data_bytes, bss_bytes,
|
---|
191 | tot_bytes, sym_bytes, sc, pc)
|
---|
192 | int fd; /* file descriptor for reading exec file */
|
---|
193 | int *ft; /* place to return ft number */
|
---|
194 | vir_bytes *text_bytes; /* place to return text size */
|
---|
195 | vir_bytes *data_bytes; /* place to return initialized data size */
|
---|
196 | vir_bytes *bss_bytes; /* place to return bss size */
|
---|
197 | phys_bytes *tot_bytes; /* place to return total size */
|
---|
198 | long *sym_bytes; /* place to return symbol table size */
|
---|
199 | vir_clicks sc; /* stack size in clicks */
|
---|
200 | vir_bytes *pc; /* program entry point (initial PC) */
|
---|
201 | {
|
---|
202 | /* Read the header and extract the text, data, bss and total sizes from it. */
|
---|
203 |
|
---|
204 | int m, ct;
|
---|
205 | vir_clicks tc, dc, s_vir, dvir;
|
---|
206 | phys_clicks totc;
|
---|
207 | struct exec hdr; /* a.out header is read in here */
|
---|
208 |
|
---|
209 | /* Read the header and check the magic number. The standard MINIX header
|
---|
210 | * is defined in <a.out.h>. It consists of 8 chars followed by 6 longs.
|
---|
211 | * Then come 4 more longs that are not used here.
|
---|
212 | * Byte 0: magic number 0x01
|
---|
213 | * Byte 1: magic number 0x03
|
---|
214 | * Byte 2: normal = 0x10 (not checked, 0 is OK), separate I/D = 0x20
|
---|
215 | * Byte 3: CPU type, Intel 16 bit = 0x04, Intel 32 bit = 0x10,
|
---|
216 | * Motorola = 0x0B, Sun SPARC = 0x17
|
---|
217 | * Byte 4: Header length = 0x20
|
---|
218 | * Bytes 5-7 are not used.
|
---|
219 | *
|
---|
220 | * Now come the 6 longs
|
---|
221 | * Bytes 8-11: size of text segments in bytes
|
---|
222 | * Bytes 12-15: size of initialized data segment in bytes
|
---|
223 | * Bytes 16-19: size of bss in bytes
|
---|
224 | * Bytes 20-23: program entry point
|
---|
225 | * Bytes 24-27: total memory allocated to program (text, data + stack)
|
---|
226 | * Bytes 28-31: size of symbol table in bytes
|
---|
227 | * The longs are represented in a machine dependent order,
|
---|
228 | * little-endian on the 8088, big-endian on the 68000.
|
---|
229 | * The header is followed directly by the text and data segments, and the
|
---|
230 | * symbol table (if any). The sizes are given in the header. Only the
|
---|
231 | * text and data segments are copied into memory by exec. The header is
|
---|
232 | * used here only. The symbol table is for the benefit of a debugger and
|
---|
233 | * is ignored here.
|
---|
234 | */
|
---|
235 |
|
---|
236 | if ((m= read(fd, &hdr, A_MINHDR)) < 2) return(ENOEXEC);
|
---|
237 |
|
---|
238 | /* Interpreted script? */
|
---|
239 | if (((char *) &hdr)[0] == '#' && ((char *) &hdr)[1] == '!') return(ESCRIPT);
|
---|
240 |
|
---|
241 | if (m != A_MINHDR) return(ENOEXEC);
|
---|
242 |
|
---|
243 | /* Check magic number, cpu type, and flags. */
|
---|
244 | if (BADMAG(hdr)) return(ENOEXEC);
|
---|
245 | if (hdr.a_cpu != A_I80386) return(ENOEXEC);
|
---|
246 | if ((hdr.a_flags & ~(A_NSYM | A_EXEC | A_SEP)) != 0) return(ENOEXEC);
|
---|
247 |
|
---|
248 | *ft = ( (hdr.a_flags & A_SEP) ? SEPARATE : 0); /* separate I & D or not */
|
---|
249 |
|
---|
250 | /* Get text and data sizes. */
|
---|
251 | *text_bytes = (vir_bytes) hdr.a_text; /* text size in bytes */
|
---|
252 | *data_bytes = (vir_bytes) hdr.a_data; /* data size in bytes */
|
---|
253 | *bss_bytes = (vir_bytes) hdr.a_bss; /* bss size in bytes */
|
---|
254 | *tot_bytes = hdr.a_total; /* total bytes to allocate for prog */
|
---|
255 | *sym_bytes = hdr.a_syms; /* symbol table size in bytes */
|
---|
256 | if (*tot_bytes == 0) return(ENOEXEC);
|
---|
257 |
|
---|
258 | if (*ft != SEPARATE) {
|
---|
259 | /* If I & D space is not separated, it is all considered data. Text=0*/
|
---|
260 | *data_bytes += *text_bytes;
|
---|
261 | *text_bytes = 0;
|
---|
262 | }
|
---|
263 | *pc = hdr.a_entry; /* initial address to start execution */
|
---|
264 |
|
---|
265 | /* Check to see if segment sizes are feasible. */
|
---|
266 | tc = ((unsigned long) *text_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
|
---|
267 | dc = (*data_bytes + *bss_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
|
---|
268 | totc = (*tot_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
|
---|
269 | if (dc >= totc) return(ENOEXEC); /* stack must be at least 1 click */
|
---|
270 | dvir = (*ft == SEPARATE ? 0 : tc);
|
---|
271 | s_vir = dvir + (totc - sc);
|
---|
272 | m = (dvir + dc > s_vir) ? ENOMEM : OK;
|
---|
273 | ct = hdr.a_hdrlen & BYTE; /* header length */
|
---|
274 | if (ct > A_MINHDR) lseek(fd, (off_t) ct, SEEK_SET); /* skip unused hdr */
|
---|
275 | return(m);
|
---|
276 | }
|
---|
277 |
|
---|
278 | /*===========================================================================*
|
---|
279 | * new_mem *
|
---|
280 | *===========================================================================*/
|
---|
281 | PRIVATE int new_mem(sh_mp, text_bytes, data_bytes,
|
---|
282 | bss_bytes,stk_bytes,tot_bytes)
|
---|
283 | struct mproc *sh_mp; /* text can be shared with this process */
|
---|
284 | vir_bytes text_bytes; /* text segment size in bytes */
|
---|
285 | vir_bytes data_bytes; /* size of initialized data in bytes */
|
---|
286 | vir_bytes bss_bytes; /* size of bss in bytes */
|
---|
287 | vir_bytes stk_bytes; /* size of initial stack segment in bytes */
|
---|
288 | phys_bytes tot_bytes; /* total memory to allocate, including gap */
|
---|
289 | {
|
---|
290 | /* Allocate new memory and release the old memory. Change the map and report
|
---|
291 | * the new map to the kernel. Zero the new core image's bss, gap and stack.
|
---|
292 | */
|
---|
293 |
|
---|
294 | register struct mproc *rmp = mp;
|
---|
295 | vir_clicks text_clicks, data_clicks, gap_clicks, stack_clicks, tot_clicks;
|
---|
296 | phys_clicks new_base;
|
---|
297 | phys_bytes bytes, base, bss_offset;
|
---|
298 | int s;
|
---|
299 |
|
---|
300 | /* No need to allocate text if it can be shared. */
|
---|
301 | if (sh_mp != NULL) text_bytes = 0;
|
---|
302 |
|
---|
303 | /* Allow the old data to be swapped out to make room. (Which is really a
|
---|
304 | * waste of time, because we are going to throw it away anyway.)
|
---|
305 | */
|
---|
306 | rmp->mp_flags |= WAITING;
|
---|
307 |
|
---|
308 | /* Acquire the new memory. Each of the 4 parts: text, (data+bss), gap,
|
---|
309 | * and stack occupies an integral number of clicks, starting at click
|
---|
310 | * boundary. The data and bss parts are run together with no space.
|
---|
311 | */
|
---|
312 | text_clicks = ((unsigned long) text_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
|
---|
313 | data_clicks = (data_bytes + bss_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
|
---|
314 | stack_clicks = (stk_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
|
---|
315 | tot_clicks = (tot_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
|
---|
316 | gap_clicks = tot_clicks - data_clicks - stack_clicks;
|
---|
317 | if ( (int) gap_clicks < 0) return(ENOMEM);
|
---|
318 |
|
---|
319 | /* Try to allocate memory for the new process. */
|
---|
320 | new_base = alloc_mem(text_clicks + tot_clicks);
|
---|
321 | if (new_base == NO_MEM) return(ENOMEM);
|
---|
322 |
|
---|
323 | /* We've got memory for the new core image. Release the old one. */
|
---|
324 | rmp = mp;
|
---|
325 |
|
---|
326 | if (find_share(rmp, rmp->mp_ino, rmp->mp_dev, rmp->mp_ctime) == NULL) {
|
---|
327 | /* No other process shares the text segment, so free it. */
|
---|
328 | free_mem(rmp->mp_seg[T].mem_phys, rmp->mp_seg[T].mem_len);
|
---|
329 | }
|
---|
330 | /* Free the data and stack segments. */
|
---|
331 | free_mem(rmp->mp_seg[D].mem_phys,
|
---|
332 | rmp->mp_seg[S].mem_vir + rmp->mp_seg[S].mem_len - rmp->mp_seg[D].mem_vir);
|
---|
333 |
|
---|
334 | /* We have now passed the point of no return. The old core image has been
|
---|
335 | * forever lost, memory for a new core image has been allocated. Set up
|
---|
336 | * and report new map.
|
---|
337 | */
|
---|
338 | if (sh_mp != NULL) {
|
---|
339 | /* Share the text segment. */
|
---|
340 | rmp->mp_seg[T] = sh_mp->mp_seg[T];
|
---|
341 | } else {
|
---|
342 | rmp->mp_seg[T].mem_phys = new_base;
|
---|
343 | rmp->mp_seg[T].mem_vir = 0;
|
---|
344 | rmp->mp_seg[T].mem_len = text_clicks;
|
---|
345 | }
|
---|
346 | rmp->mp_seg[D].mem_phys = new_base + text_clicks;
|
---|
347 | rmp->mp_seg[D].mem_vir = 0;
|
---|
348 | rmp->mp_seg[D].mem_len = data_clicks;
|
---|
349 | rmp->mp_seg[S].mem_phys = rmp->mp_seg[D].mem_phys + data_clicks + gap_clicks;
|
---|
350 | rmp->mp_seg[S].mem_vir = rmp->mp_seg[D].mem_vir + data_clicks + gap_clicks;
|
---|
351 | rmp->mp_seg[S].mem_len = stack_clicks;
|
---|
352 |
|
---|
353 | sys_newmap(who, rmp->mp_seg); /* report new map to the kernel */
|
---|
354 |
|
---|
355 | /* The old memory may have been swapped out, but the new memory is real. */
|
---|
356 | rmp->mp_flags &= ~(WAITING|ONSWAP|SWAPIN);
|
---|
357 |
|
---|
358 | /* Zero the bss, gap, and stack segment. */
|
---|
359 | bytes = (phys_bytes)(data_clicks + gap_clicks + stack_clicks) << CLICK_SHIFT;
|
---|
360 | base = (phys_bytes) rmp->mp_seg[D].mem_phys << CLICK_SHIFT;
|
---|
361 | bss_offset = (data_bytes >> CLICK_SHIFT) << CLICK_SHIFT;
|
---|
362 | base += bss_offset;
|
---|
363 | bytes -= bss_offset;
|
---|
364 |
|
---|
365 | if ((s=sys_memset(0, base, bytes)) != OK) {
|
---|
366 | panic(__FILE__,"new_mem can't zero", s);
|
---|
367 | }
|
---|
368 |
|
---|
369 | return(OK);
|
---|
370 | }
|
---|
371 |
|
---|
372 | /*===========================================================================*
|
---|
373 | * patch_ptr *
|
---|
374 | *===========================================================================*/
|
---|
375 | PRIVATE void patch_ptr(stack, base)
|
---|
376 | char stack[ARG_MAX]; /* pointer to stack image within PM */
|
---|
377 | vir_bytes base; /* virtual address of stack base inside user */
|
---|
378 | {
|
---|
379 | /* When doing an exec(name, argv, envp) call, the user builds up a stack
|
---|
380 | * image with arg and env pointers relative to the start of the stack. Now
|
---|
381 | * these pointers must be relocated, since the stack is not positioned at
|
---|
382 | * address 0 in the user's address space.
|
---|
383 | */
|
---|
384 |
|
---|
385 | char **ap, flag;
|
---|
386 | vir_bytes v;
|
---|
387 |
|
---|
388 | flag = 0; /* counts number of 0-pointers seen */
|
---|
389 | ap = (char **) stack; /* points initially to 'nargs' */
|
---|
390 | ap++; /* now points to argv[0] */
|
---|
391 | while (flag < 2) {
|
---|
392 | if (ap >= (char **) &stack[ARG_MAX]) return; /* too bad */
|
---|
393 | if (*ap != NULL) {
|
---|
394 | v = (vir_bytes) *ap; /* v is relative pointer */
|
---|
395 | v += base; /* relocate it */
|
---|
396 | *ap = (char *) v; /* put it back */
|
---|
397 | } else {
|
---|
398 | flag++;
|
---|
399 | }
|
---|
400 | ap++;
|
---|
401 | }
|
---|
402 | }
|
---|
403 |
|
---|
404 | /*===========================================================================*
|
---|
405 | * insert_arg *
|
---|
406 | *===========================================================================*/
|
---|
407 | PRIVATE int insert_arg(stack, stk_bytes, arg, replace)
|
---|
408 | char stack[ARG_MAX]; /* pointer to stack image within PM */
|
---|
409 | vir_bytes *stk_bytes; /* size of initial stack */
|
---|
410 | char *arg; /* argument to prepend/replace as new argv[0] */
|
---|
411 | int replace;
|
---|
412 | {
|
---|
413 | /* Patch the stack so that arg will become argv[0]. Be careful, the stack may
|
---|
414 | * be filled with garbage, although it normally looks like this:
|
---|
415 | * nargs argv[0] ... argv[nargs-1] NULL envp[0] ... NULL
|
---|
416 | * followed by the strings "pointed" to by the argv[i] and the envp[i]. The
|
---|
417 | * pointers are really offsets from the start of stack.
|
---|
418 | * Return true iff the operation succeeded.
|
---|
419 | */
|
---|
420 | int offset, a0, a1, old_bytes = *stk_bytes;
|
---|
421 |
|
---|
422 | /* Prepending arg adds at least one string and a zero byte. */
|
---|
423 | offset = strlen(arg) + 1;
|
---|
424 |
|
---|
425 | a0 = (int) ((char **) stack)[1]; /* argv[0] */
|
---|
426 | if (a0 < 4 * PTRSIZE || a0 >= old_bytes) return(FALSE);
|
---|
427 |
|
---|
428 | a1 = a0; /* a1 will point to the strings to be moved */
|
---|
429 | if (replace) {
|
---|
430 | /* Move a1 to the end of argv[0][] (argv[1] if nargs > 1). */
|
---|
431 | do {
|
---|
432 | if (a1 == old_bytes) return(FALSE);
|
---|
433 | --offset;
|
---|
434 | } while (stack[a1++] != 0);
|
---|
435 | } else {
|
---|
436 | offset += PTRSIZE; /* new argv[0] needs new pointer in argv[] */
|
---|
437 | a0 += PTRSIZE; /* location of new argv[0][]. */
|
---|
438 | }
|
---|
439 |
|
---|
440 | /* stack will grow by offset bytes (or shrink by -offset bytes) */
|
---|
441 | if ((*stk_bytes += offset) > ARG_MAX) return(FALSE);
|
---|
442 |
|
---|
443 | /* Reposition the strings by offset bytes */
|
---|
444 | memmove(stack + a1 + offset, stack + a1, old_bytes - a1);
|
---|
445 |
|
---|
446 | strcpy(stack + a0, arg); /* Put arg in the new space. */
|
---|
447 |
|
---|
448 | if (!replace) {
|
---|
449 | /* Make space for a new argv[0]. */
|
---|
450 | memmove(stack + 2 * PTRSIZE, stack + 1 * PTRSIZE, a0 - 2 * PTRSIZE);
|
---|
451 |
|
---|
452 | ((char **) stack)[0]++; /* nargs++; */
|
---|
453 | }
|
---|
454 | /* Now patch up argv[] and envp[] by offset. */
|
---|
455 | patch_ptr(stack, (vir_bytes) offset);
|
---|
456 | ((char **) stack)[1] = (char *) a0; /* set argv[0] correctly */
|
---|
457 | return(TRUE);
|
---|
458 | }
|
---|
459 |
|
---|
460 | /*===========================================================================*
|
---|
461 | * patch_stack *
|
---|
462 | *===========================================================================*/
|
---|
463 | PRIVATE char *patch_stack(fd, stack, stk_bytes, script)
|
---|
464 | int fd; /* file descriptor to open script file */
|
---|
465 | char stack[ARG_MAX]; /* pointer to stack image within PM */
|
---|
466 | vir_bytes *stk_bytes; /* size of initial stack */
|
---|
467 | char *script; /* name of script to interpret */
|
---|
468 | {
|
---|
469 | /* Patch the argument vector to include the path name of the script to be
|
---|
470 | * interpreted, and all strings on the #! line. Returns the path name of
|
---|
471 | * the interpreter.
|
---|
472 | */
|
---|
473 | char *sp, *interp = NULL;
|
---|
474 | int n;
|
---|
475 | enum { INSERT=FALSE, REPLACE=TRUE };
|
---|
476 |
|
---|
477 | /* Make script[] the new argv[0]. */
|
---|
478 | if (!insert_arg(stack, stk_bytes, script, REPLACE)) return(NULL);
|
---|
479 |
|
---|
480 | if (lseek(fd, 2L, 0) == -1 /* just behind the #! */
|
---|
481 | || (n= read(fd, script, PATH_MAX)) < 0 /* read line one */
|
---|
482 | || (sp= memchr(script, '\n', n)) == NULL) /* must be a proper line */
|
---|
483 | return(NULL);
|
---|
484 |
|
---|
485 | /* Move sp backwards through script[], prepending each string to stack. */
|
---|
486 | for (;;) {
|
---|
487 | /* skip spaces behind argument. */
|
---|
488 | while (sp > script && (*--sp == ' ' || *sp == '\t')) {}
|
---|
489 | if (sp == script) break;
|
---|
490 |
|
---|
491 | sp[1] = 0;
|
---|
492 | /* Move to the start of the argument. */
|
---|
493 | while (sp > script && sp[-1] != ' ' && sp[-1] != '\t') --sp;
|
---|
494 |
|
---|
495 | interp = sp;
|
---|
496 | if (!insert_arg(stack, stk_bytes, sp, INSERT)) return(NULL);
|
---|
497 | }
|
---|
498 |
|
---|
499 | /* Round *stk_bytes up to the size of a pointer for alignment contraints. */
|
---|
500 | *stk_bytes= ((*stk_bytes + PTRSIZE - 1) / PTRSIZE) * PTRSIZE;
|
---|
501 |
|
---|
502 | close(fd);
|
---|
503 | return(interp);
|
---|
504 | }
|
---|
505 |
|
---|
506 | /*===========================================================================*
|
---|
507 | * rw_seg *
|
---|
508 | *===========================================================================*/
|
---|
509 | PUBLIC void rw_seg(rw, fd, proc, seg, seg_bytes0)
|
---|
510 | int rw; /* 0 = read, 1 = write */
|
---|
511 | int fd; /* file descriptor to read from / write to */
|
---|
512 | int proc; /* process number */
|
---|
513 | int seg; /* T, D, or S */
|
---|
514 | phys_bytes seg_bytes0; /* how much is to be transferred? */
|
---|
515 | {
|
---|
516 | /* Transfer text or data from/to a file and copy to/from a process segment.
|
---|
517 | * This procedure is a little bit tricky. The logical way to transfer a
|
---|
518 | * segment would be block by block and copying each block to/from the user
|
---|
519 | * space one at a time. This is too slow, so we do something dirty here,
|
---|
520 | * namely send the user space and virtual address to the file system in the
|
---|
521 | * upper 10 bits of the file descriptor, and pass it the user virtual address
|
---|
522 | * instead of a PM address. The file system extracts these parameters when
|
---|
523 | * gets a read or write call from the process manager, which is the only
|
---|
524 | * process that is permitted to use this trick. The file system then copies
|
---|
525 | * the whole segment directly to/from user space, bypassing PM completely.
|
---|
526 | *
|
---|
527 | * The byte count on read is usually smaller than the segment count, because
|
---|
528 | * a segment is padded out to a click multiple, and the data segment is only
|
---|
529 | * partially initialized.
|
---|
530 | */
|
---|
531 |
|
---|
532 | int new_fd, bytes, r;
|
---|
533 | char *ubuf_ptr;
|
---|
534 | struct mem_map *sp = &mproc[proc].mp_seg[seg];
|
---|
535 | phys_bytes seg_bytes = seg_bytes0;
|
---|
536 |
|
---|
537 | new_fd = (proc << 7) | (seg << 5) | fd;
|
---|
538 | ubuf_ptr = (char *) ((vir_bytes) sp->mem_vir << CLICK_SHIFT);
|
---|
539 |
|
---|
540 | while (seg_bytes != 0) {
|
---|
541 | #define PM_CHUNK_SIZE 8192
|
---|
542 | bytes = MIN((INT_MAX / PM_CHUNK_SIZE) * PM_CHUNK_SIZE, seg_bytes);
|
---|
543 | if (rw == 0) {
|
---|
544 | r = read(new_fd, ubuf_ptr, bytes);
|
---|
545 | } else {
|
---|
546 | r = write(new_fd, ubuf_ptr, bytes);
|
---|
547 | }
|
---|
548 | if (r != bytes) break;
|
---|
549 | ubuf_ptr += bytes;
|
---|
550 | seg_bytes -= bytes;
|
---|
551 | }
|
---|
552 | }
|
---|
553 |
|
---|
554 | /*===========================================================================*
|
---|
555 | * find_share *
|
---|
556 | *===========================================================================*/
|
---|
557 | PUBLIC struct mproc *find_share(mp_ign, ino, dev, ctime)
|
---|
558 | struct mproc *mp_ign; /* process that should not be looked at */
|
---|
559 | ino_t ino; /* parameters that uniquely identify a file */
|
---|
560 | dev_t dev;
|
---|
561 | time_t ctime;
|
---|
562 | {
|
---|
563 | /* Look for a process that is the file <ino, dev, ctime> in execution. Don't
|
---|
564 | * accidentally "find" mp_ign, because it is the process on whose behalf this
|
---|
565 | * call is made.
|
---|
566 | */
|
---|
567 | struct mproc *sh_mp;
|
---|
568 | for (sh_mp = &mproc[0]; sh_mp < &mproc[NR_PROCS]; sh_mp++) {
|
---|
569 |
|
---|
570 | if (!(sh_mp->mp_flags & SEPARATE)) continue;
|
---|
571 | if (sh_mp == mp_ign) continue;
|
---|
572 | if (sh_mp->mp_ino != ino) continue;
|
---|
573 | if (sh_mp->mp_dev != dev) continue;
|
---|
574 | if (sh_mp->mp_ctime != ctime) continue;
|
---|
575 | return sh_mp;
|
---|
576 | }
|
---|
577 | return(NULL);
|
---|
578 | }
|
---|