/* This file contains the main program of the process manager and some related * procedures. When MINIX starts up, the kernel runs for a little while, * initializing itself and its tasks, and then it runs PM and FS. Both PM * and FS initialize themselves as far as they can. PM asks the kernel for * all free memory and starts serving requests. * * The entry points into this file are: * main: starts PM running * setreply: set the reply to be sent to process making an PM system call */ #include "pm.h" #include #include #include #include #include #include #include #include #include "mproc.h" #include "param.h" #include "../../kernel/const.h" #include "../../kernel/config.h" #include "../../kernel/type.h" #include "../../kernel/proc.h" FORWARD _PROTOTYPE( void get_work, (void) ); FORWARD _PROTOTYPE( void pm_init, (void) ); FORWARD _PROTOTYPE( int get_nice_value, (int queue) ); FORWARD _PROTOTYPE( void get_mem_chunks, (struct memory *mem_chunks) ); FORWARD _PROTOTYPE( void patch_mem_chunks, (struct memory *mem_chunks, struct mem_map *map_ptr) ); #define click_to_round_k(n) \ ((unsigned) ((((unsigned long) (n) << CLICK_SHIFT) + 512) / 1024)) /*===========================================================================* * main * *===========================================================================*/ PUBLIC int main() { /* Main routine of the process manager. */ int result, s, proc_nr; struct mproc *rmp; sigset_t sigset; pm_init(); /* initialize process manager tables */ /* This is PM's main loop- get work and do it, forever and forever. */ while (TRUE) { get_work(); /* wait for an PM system call */ /* Check for system notifications first. Special cases. */ if (call_nr == SYN_ALARM) { pm_expire_timers(m_in.NOTIFY_TIMESTAMP); result = SUSPEND; /* don't reply */ } else if (call_nr == SYS_SIG) { /* signals pending */ sigset = m_in.NOTIFY_ARG; if (sigismember(&sigset, SIGKSIG)) (void) ksig_pending(); result = SUSPEND; /* don't reply */ } /* Else, if the system call number is valid, perform the call. */ else if ((unsigned) call_nr >= NCALLS) { result = ENOSYS; } else { result = (*call_vec[call_nr])(); } /* Send the results back to the user to indicate completion. */ if (result != SUSPEND) setreply(who, result); swap_in(); /* maybe a process can be swapped in? */ /* Send out all pending reply messages, including the answer to * the call just made above. The processes must not be swapped out. */ for (proc_nr=0, rmp=mproc; proc_nr < NR_PROCS; proc_nr++, rmp++) { /* In the meantime, the process may have been killed by a * signal (e.g. if a lethal pending signal was unblocked) * without the PM realizing it. If the slot is no longer in * use or just a zombie, don't try to reply. */ if ((rmp->mp_flags & (REPLY | ONSWAP | IN_USE | ZOMBIE)) == (REPLY | IN_USE)) { if ((s=send(proc_nr, &rmp->mp_reply)) != OK) { panic(__FILE__,"PM can't reply to", proc_nr); } rmp->mp_flags &= ~REPLY; } } } return(OK); } /*===========================================================================* * get_work * *===========================================================================*/ PRIVATE void get_work() { /* Wait for the next message and extract useful information from it. */ if (receive(ANY, &m_in) != OK) panic(__FILE__,"PM receive error", NO_NUM); who = m_in.m_source; /* who sent the message */ call_nr = m_in.m_type; /* system call number */ /* Process slot of caller. Misuse PM's own process slot if the kernel is * calling. This can happen in case of synchronous alarms (CLOCK) or or * event like pending kernel signals (SYSTEM). */ mp = &mproc[who < 0 ? PM_PROC_NR : who]; } /*===========================================================================* * setreply * *===========================================================================*/ PUBLIC void setreply(proc_nr, result) int proc_nr; /* process to reply to */ int result; /* result of call (usually OK or error #) */ { /* Fill in a reply message to be sent later to a user process. System calls * may occasionally fill in other fields, this is only for the main return * value, and for setting the "must send reply" flag. */ register struct mproc *rmp = &mproc[proc_nr]; rmp->mp_reply.reply_res = result; rmp->mp_flags |= REPLY; /* reply pending */ if (rmp->mp_flags & ONSWAP) swap_inqueue(rmp); /* must swap this process back in */ } /*===========================================================================* * pm_init * *===========================================================================*/ PRIVATE void pm_init() { /* Initialize the process manager. * Memory use info is collected from the boot monitor, the kernel, and * all processes compiled into the system image. Initially this information * is put into an array mem_chunks. Elements of mem_chunks are struct memory, * and hold base, size pairs in units of clicks. This array is small, there * should be no more than 8 chunks. After the array of chunks has been built * the contents are used to initialize the hole list. Space for the hole list * is reserved as an array with twice as many elements as the maximum number * of processes allowed. It is managed as a linked list, and elements of the * array are struct hole, which, in addition to storage for a base and size in * click units also contain space for a link, a pointer to another element. */ int s; static struct boot_image image[NR_BOOT_PROCS]; register struct boot_image *ip; static char core_sigs[] = { SIGQUIT, SIGILL, SIGTRAP, SIGABRT, SIGEMT, SIGFPE, SIGUSR1, SIGSEGV, SIGUSR2 }; static char ign_sigs[] = { SIGCHLD }; register struct mproc *rmp; register char *sig_ptr; phys_clicks total_clicks, minix_clicks, free_clicks; message mess; struct mem_map mem_map[NR_LOCAL_SEGS]; struct memory mem_chunks[NR_MEMS]; /* Initialize process table, including timers. */ for (rmp=&mproc[0]; rmp<&mproc[NR_PROCS]; rmp++) { tmr_inittimer(&rmp->mp_timer); } /* Build the set of signals which cause core dumps, and the set of signals * that are by default ignored. */ sigemptyset(&core_sset); for (sig_ptr = core_sigs; sig_ptr < core_sigs+sizeof(core_sigs); sig_ptr++) sigaddset(&core_sset, *sig_ptr); sigemptyset(&ign_sset); for (sig_ptr = ign_sigs; sig_ptr < ign_sigs+sizeof(ign_sigs); sig_ptr++) sigaddset(&ign_sset, *sig_ptr); /* Obtain a copy of the boot monitor parameters and the kernel info struct. * Parse the list of free memory chunks. This list is what the boot monitor * reported, but it must be corrected for the kernel and system processes. */ if ((s=sys_getmonparams(monitor_params, sizeof(monitor_params))) != OK) panic(__FILE__,"get monitor params failed",s); get_mem_chunks(mem_chunks); if ((s=sys_getkinfo(&kinfo)) != OK) panic(__FILE__,"get kernel info failed",s); /* Get the memory map of the kernel to see how much memory it uses. */ if ((s=get_mem_map(SYSTASK, mem_map)) != OK) panic(__FILE__,"couldn't get memory map of SYSTASK",s); minix_clicks = (mem_map[S].mem_phys+mem_map[S].mem_len)-mem_map[T].mem_phys; patch_mem_chunks(mem_chunks, mem_map); /* Initialize PM's process table. Request a copy of the system image table * that is defined at the kernel level to see which slots to fill in. */ if (OK != (s=sys_getimage(image))) panic(__FILE__,"couldn't get image table: %d\n", s); procs_in_use = 0; /* start populating table */ printf("Building process table:"); /* show what's happening */ for (ip = &image[0]; ip < &image[NR_BOOT_PROCS]; ip++) { if (ip->proc_nr >= 0) { /* task have negative nrs */ procs_in_use += 1; /* found user process */ /* Set process details found in the image table. */ rmp = &mproc[ip->proc_nr]; strncpy(rmp->mp_name, ip->proc_name, PROC_NAME_LEN); rmp->mp_parent = RS_PROC_NR; rmp->mp_nice = get_nice_value(ip->priority); if (ip->proc_nr == INIT_PROC_NR) { /* user process */ rmp->mp_pid = INIT_PID; rmp->mp_flags |= IN_USE; sigemptyset(&rmp->mp_ignore); } else { /* system process */ rmp->mp_pid = get_free_pid(); rmp->mp_flags |= IN_USE | DONT_SWAP | PRIV_PROC; sigfillset(&rmp->mp_ignore); } sigemptyset(&rmp->mp_sigmask); sigemptyset(&rmp->mp_catch); sigemptyset(&rmp->mp_sig2mess); /* Get memory map for this process from the kernel. */ if ((s=get_mem_map(ip->proc_nr, rmp->mp_seg)) != OK) panic(__FILE__,"couldn't get process entry",s); if (rmp->mp_seg[T].mem_len != 0) rmp->mp_flags |= SEPARATE; minix_clicks += rmp->mp_seg[S].mem_phys + rmp->mp_seg[S].mem_len - rmp->mp_seg[T].mem_phys; patch_mem_chunks(mem_chunks, rmp->mp_seg); /* Tell FS about this system process. */ mess.PR_PROC_NR = ip->proc_nr; mess.PR_PID = rmp->mp_pid; if (OK != (s=send(FS_PROC_NR, &mess))) panic(__FILE__,"can't sync up with FS", s); printf(" %s", ip->proc_name); /* display process name */ } } printf(".\n"); /* last process done */ /* Override some details. PM is somewhat special. */ mproc[PM_PROC_NR].mp_pid = PM_PID; /* magically override pid */ mproc[PM_PROC_NR].mp_parent = PM_PROC_NR; /* PM doesn't have parent */ /* Tell FS that no more system processes follow and synchronize. */ mess.PR_PROC_NR = NONE; if (sendrec(FS_PROC_NR, &mess) != OK || mess.m_type != OK) panic(__FILE__,"can't sync up with FS", NO_NUM); /* Initialize tables to all physical memory and print memory information. */ printf("Physical memory:"); mem_init(mem_chunks, &free_clicks); total_clicks = minix_clicks + free_clicks; printf(" total %u KB,", click_to_round_k(total_clicks)); printf(" system %u KB,", click_to_round_k(minix_clicks)); printf(" free %u KB.\n", click_to_round_k(free_clicks)); } /*===========================================================================* * get_nice_value * *===========================================================================*/ PRIVATE int get_nice_value(queue) int queue; /* store mem chunks here */ { /* Processes in the boot image have a priority assigned. The PM doesn't know * about priorities, but uses 'nice' values instead. The priority is between * MIN_USER_Q and MAX_USER_Q. We have to scale between PRIO_MIN and PRIO_MAX. */ int nice_val = (queue - USER_Q) * (PRIO_MAX-PRIO_MIN+1) / (MIN_USER_Q-MAX_USER_Q+1); if (nice_val > PRIO_MAX) nice_val = PRIO_MAX; /* shouldn't happen */ if (nice_val < PRIO_MIN) nice_val = PRIO_MIN; /* shouldn't happen */ return nice_val; } /*===========================================================================* * get_mem_chunks * *===========================================================================*/ PRIVATE void get_mem_chunks(mem_chunks) struct memory *mem_chunks; /* store mem chunks here */ { /* Initialize the free memory list from the 'memory' boot variable. Translate * the byte offsets and sizes in this list to clicks, properly truncated. Also * make sure that we don't exceed the maximum address space of the 286 or the * 8086, i.e. when running in 16-bit protected mode or real mode. */ long base, size, limit; char *s, *end; /* use to parse boot variable */ int i, done = 0; struct memory *memp; /* Initialize everything to zero. */ for (i = 0; i < NR_MEMS; i++) { memp = &mem_chunks[i]; /* next mem chunk is stored here */ memp->base = memp->size = 0; } /* The available memory is determined by MINIX' boot loader as a list of * (base:size)-pairs in boothead.s. The 'memory' boot variable is set in * in boot.s. The format is "b0:s0,b1:s1,b2:s2", where b0:s0 is low mem, * b1:s1 is mem between 1M and 16M, b2:s2 is mem above 16M. Pairs b1:s1 * and b2:s2 are combined if the memory is adjacent. */ s = find_param("memory"); /* get memory boot variable */ for (i = 0; i < NR_MEMS && !done; i++) { memp = &mem_chunks[i]; /* next mem chunk is stored here */ base = size = 0; /* initialize next base:size pair */ if (*s != 0) { /* get fresh data, unless at end */ /* Read fresh base and expect colon as next char. */ base = strtoul(s, &end, 0x10); /* get number */ if (end != s && *end == ':') s = ++end; /* skip ':' */ else *s=0; /* terminate, should not happen */ /* Read fresh size and expect comma or assume end. */ size = strtoul(s, &end, 0x10); /* get number */ if (end != s && *end == ',') s = ++end; /* skip ',' */ else done = 1; } limit = base + size; base = (base + CLICK_SIZE-1) & ~(long)(CLICK_SIZE-1); limit &= ~(long)(CLICK_SIZE-1); if (limit <= base) continue; memp->base = base >> CLICK_SHIFT; memp->size = (limit - base) >> CLICK_SHIFT; } } /*===========================================================================* * patch_mem_chunks * *===========================================================================*/ PRIVATE void patch_mem_chunks(mem_chunks, map_ptr) struct memory *mem_chunks; /* store mem chunks here */ struct mem_map *map_ptr; /* memory to remove */ { /* Remove server memory from the free memory list. The boot monitor * promises to put processes at the start of memory chunks. The * tasks all use same base address, so only the first task changes * the memory lists. The servers and init have their own memory * spaces and their memory will be removed from the list. */ struct memory *memp; for (memp = mem_chunks; memp < &mem_chunks[NR_MEMS]; memp++) { if (memp->base == map_ptr[T].mem_phys) { memp->base += map_ptr[T].mem_len + map_ptr[D].mem_len; memp->size -= map_ptr[T].mem_len + map_ptr[D].mem_len; } } }