/* This file handles signals, which are asynchronous events and are generally * a messy and unpleasant business. Signals can be generated by the KILL * system call, or from the keyboard (SIGINT) or from the clock (SIGALRM). * In all cases control eventually passes to check_sig() to see which processes * can be signaled. The actual signaling is done by sig_proc(). * * The entry points into this file are: * do_sigaction: perform the SIGACTION system call * do_sigpending: perform the SIGPENDING system call * do_sigprocmask: perform the SIGPROCMASK system call * do_sigreturn: perform the SIGRETURN system call * do_sigsuspend: perform the SIGSUSPEND system call * do_kill: perform the KILL system call * do_alarm: perform the ALARM system call by calling set_alarm() * set_alarm: tell the clock task to start or stop a timer * do_pause: perform the PAUSE system call * ksig_pending: the kernel notified about pending signals * sig_proc: interrupt or terminate a signaled process * check_sig: check which processes to signal with sig_proc() * check_pending: check if a pending signal can now be delivered */ #include "pm.h" #include #include #include #include #include #include #include #include "mproc.h" #include "param.h" #define CORE_MODE 0777 /* mode to use on core image files */ #define DUMPED 0200 /* bit set in status when core dumped */ FORWARD _PROTOTYPE( void dump_core, (struct mproc *rmp) ); FORWARD _PROTOTYPE( void unpause, (int pro) ); FORWARD _PROTOTYPE( void handle_sig, (int proc_nr, sigset_t sig_map) ); FORWARD _PROTOTYPE( void cause_sigalrm, (struct timer *tp) ); /*===========================================================================* * do_sigaction * *===========================================================================*/ PUBLIC int do_sigaction() { int r; struct sigaction svec; struct sigaction *svp; if (m_in.sig_nr == SIGKILL) return(OK); if (m_in.sig_nr < 1 || m_in.sig_nr > _NSIG) return (EINVAL); svp = &mp->mp_sigact[m_in.sig_nr]; if ((struct sigaction *) m_in.sig_osa != (struct sigaction *) NULL) { r = sys_datacopy(PM_PROC_NR,(vir_bytes) svp, who, (vir_bytes) m_in.sig_osa, (phys_bytes) sizeof(svec)); if (r != OK) return(r); } if ((struct sigaction *) m_in.sig_nsa == (struct sigaction *) NULL) return(OK); /* Read in the sigaction structure. */ r = sys_datacopy(who, (vir_bytes) m_in.sig_nsa, PM_PROC_NR, (vir_bytes) &svec, (phys_bytes) sizeof(svec)); if (r != OK) return(r); if (svec.sa_handler == SIG_IGN) { sigaddset(&mp->mp_ignore, m_in.sig_nr); sigdelset(&mp->mp_sigpending, m_in.sig_nr); sigdelset(&mp->mp_catch, m_in.sig_nr); sigdelset(&mp->mp_sig2mess, m_in.sig_nr); } else if (svec.sa_handler == SIG_DFL) { sigdelset(&mp->mp_ignore, m_in.sig_nr); sigdelset(&mp->mp_catch, m_in.sig_nr); sigdelset(&mp->mp_sig2mess, m_in.sig_nr); } else if (svec.sa_handler == SIG_MESS) { if (! (mp->mp_flags & PRIV_PROC)) return(EPERM); sigdelset(&mp->mp_ignore, m_in.sig_nr); sigaddset(&mp->mp_sig2mess, m_in.sig_nr); sigdelset(&mp->mp_catch, m_in.sig_nr); } else { sigdelset(&mp->mp_ignore, m_in.sig_nr); sigaddset(&mp->mp_catch, m_in.sig_nr); sigdelset(&mp->mp_sig2mess, m_in.sig_nr); } mp->mp_sigact[m_in.sig_nr].sa_handler = svec.sa_handler; sigdelset(&svec.sa_mask, SIGKILL); mp->mp_sigact[m_in.sig_nr].sa_mask = svec.sa_mask; mp->mp_sigact[m_in.sig_nr].sa_flags = svec.sa_flags; mp->mp_sigreturn = (vir_bytes) m_in.sig_ret; return(OK); } /*===========================================================================* * do_sigpending * *===========================================================================*/ PUBLIC int do_sigpending() { mp->mp_reply.reply_mask = (long) mp->mp_sigpending; return OK; } /*===========================================================================* * do_sigprocmask * *===========================================================================*/ PUBLIC int do_sigprocmask() { /* Note that the library interface passes the actual mask in sigmask_set, * not a pointer to the mask, in order to save a copy. Similarly, * the old mask is placed in the return message which the library * interface copies (if requested) to the user specified address. * * The library interface must set SIG_INQUIRE if the 'act' argument * is NULL. */ int i; mp->mp_reply.reply_mask = (long) mp->mp_sigmask; switch (m_in.sig_how) { case SIG_BLOCK: sigdelset((sigset_t *)&m_in.sig_set, SIGKILL); for (i = 1; i <= _NSIG; i++) { if (sigismember((sigset_t *)&m_in.sig_set, i)) sigaddset(&mp->mp_sigmask, i); } break; case SIG_UNBLOCK: for (i = 1; i <= _NSIG; i++) { if (sigismember((sigset_t *)&m_in.sig_set, i)) sigdelset(&mp->mp_sigmask, i); } check_pending(mp); break; case SIG_SETMASK: sigdelset((sigset_t *) &m_in.sig_set, SIGKILL); mp->mp_sigmask = (sigset_t) m_in.sig_set; check_pending(mp); break; case SIG_INQUIRE: break; default: return(EINVAL); break; } return OK; } /*===========================================================================* * do_sigsuspend * *===========================================================================*/ PUBLIC int do_sigsuspend() { mp->mp_sigmask2 = mp->mp_sigmask; /* save the old mask */ mp->mp_sigmask = (sigset_t) m_in.sig_set; sigdelset(&mp->mp_sigmask, SIGKILL); mp->mp_flags |= SIGSUSPENDED; check_pending(mp); return(SUSPEND); } /*===========================================================================* * do_sigreturn * *===========================================================================*/ PUBLIC int do_sigreturn() { /* A user signal handler is done. Restore context and check for * pending unblocked signals. */ int r; mp->mp_sigmask = (sigset_t) m_in.sig_set; sigdelset(&mp->mp_sigmask, SIGKILL); r = sys_sigreturn(who, (struct sigmsg *) m_in.sig_context); check_pending(mp); return(r); } /*===========================================================================* * do_kill * *===========================================================================*/ PUBLIC int do_kill() { /* Perform the kill(pid, signo) system call. */ return check_sig(m_in.pid, m_in.sig_nr); } /*===========================================================================* * ksig_pending * *===========================================================================*/ PUBLIC int ksig_pending() { /* Certain signals, such as segmentation violations originate in the kernel. * When the kernel detects such signals, it notifies the PM to take further * action. The PM requests the kernel to send messages with the process * slot and bit map for all signaled processes. The File System, for example, * uses this mechanism to signal writing on broken pipes (SIGPIPE). * * The kernel has notified the PM about pending signals. Request pending * signals until all signals are handled. If there are no more signals, * NONE is returned in the process number field. */ int proc_nr; sigset_t sig_map; while (TRUE) { sys_getksig(&proc_nr, &sig_map); /* get an arbitrary pending signal */ if (NONE == proc_nr) { /* stop if no more pending signals */ break; } else { handle_sig(proc_nr, sig_map); /* handle the received signal */ sys_endksig(proc_nr); /* tell kernel it's done */ } } return(SUSPEND); /* prevents sending reply */ } /*===========================================================================* * handle_sig * *===========================================================================*/ PRIVATE void handle_sig(proc_nr, sig_map) int proc_nr; sigset_t sig_map; { register struct mproc *rmp; int i; pid_t proc_id, id; rmp = &mproc[proc_nr]; if ((rmp->mp_flags & (IN_USE | ZOMBIE)) != IN_USE) return; proc_id = rmp->mp_pid; mp = &mproc[0]; /* pretend signals are from PM */ mp->mp_procgrp = rmp->mp_procgrp; /* get process group right */ /* Check each bit in turn to see if a signal is to be sent. Unlike * kill(), the kernel may collect several unrelated signals for a * process and pass them to PM in one blow. Thus loop on the bit * map. For SIGINT and SIGQUIT, use proc_id 0 to indicate a broadcast * to the recipient's process group. For SIGKILL, use proc_id -1 to * indicate a systemwide broadcast. */ for (i = 1; i <= _NSIG; i++) { if (!sigismember(&sig_map, i)) continue; switch (i) { case SIGINT: case SIGQUIT: id = 0; break; /* broadcast to process group */ case SIGKILL: id = -1; break; /* broadcast to all except INIT */ default: id = proc_id; break; } check_sig(id, i); } } /*===========================================================================* * do_alarm * *===========================================================================*/ PUBLIC int do_alarm() { /* Perform the alarm(seconds) system call. */ return(set_alarm(who, m_in.seconds)); } /*===========================================================================* * set_alarm * *===========================================================================*/ PUBLIC int set_alarm(proc_nr, sec) int proc_nr; /* process that wants the alarm */ int sec; /* how many seconds delay before the signal */ { /* This routine is used by do_alarm() to set the alarm timer. It is also used * to turn the timer off when a process exits with the timer still on. */ clock_t ticks; /* number of ticks for alarm */ clock_t exptime; /* needed for remaining time on previous alarm */ clock_t uptime; /* current system time */ int remaining; /* previous time left in seconds */ int s; /* First determine remaining time of previous alarm, if set. */ if (mproc[proc_nr].mp_flags & ALARM_ON) { if ( (s=getuptime(&uptime)) != OK) panic(__FILE__,"set_alarm couldn't get uptime", s); exptime = *tmr_exp_time(&mproc[proc_nr].mp_timer); remaining = (int) ((exptime - uptime + (HZ-1))/HZ); if (remaining < 0) remaining = 0; } else { remaining = 0; } /* Tell the clock task to provide a signal message when the time comes. * * Large delays cause a lot of problems. First, the alarm system call * takes an unsigned seconds count and the library has cast it to an int. * That probably works, but on return the library will convert "negative" * unsigneds to errors. Presumably no one checks for these errors, so * force this call through. Second, If unsigned and long have the same * size, converting from seconds to ticks can easily overflow. Finally, * the kernel has similar overflow bugs adding ticks. * * Fixing this requires a lot of ugly casts to fit the wrong interface * types and to avoid overflow traps. ALRM_EXP_TIME has the right type * (clock_t) although it is declared as long. How can variables like * this be declared properly without combinatorial explosion of message * types? */ ticks = (clock_t) (HZ * (unsigned long) (unsigned) sec); if ( (unsigned long) ticks / HZ != (unsigned) sec) ticks = LONG_MAX; /* eternity (really TMR_NEVER) */ if (ticks != 0) { pm_set_timer(&mproc[proc_nr].mp_timer, ticks, cause_sigalrm, proc_nr); mproc[proc_nr].mp_flags |= ALARM_ON; } else if (mproc[proc_nr].mp_flags & ALARM_ON) { pm_cancel_timer(&mproc[proc_nr].mp_timer); mproc[proc_nr].mp_flags &= ~ALARM_ON; } return(remaining); } /*===========================================================================* * cause_sigalrm * *===========================================================================*/ PRIVATE void cause_sigalrm(tp) struct timer *tp; { int proc_nr; register struct mproc *rmp; proc_nr = tmr_arg(tp)->ta_int; /* get process from timer */ rmp = &mproc[proc_nr]; if ((rmp->mp_flags & (IN_USE | ZOMBIE)) != IN_USE) return; if ((rmp->mp_flags & ALARM_ON) == 0) return; rmp->mp_flags &= ~ALARM_ON; check_sig(rmp->mp_pid, SIGALRM); } /*===========================================================================* * do_pause * *===========================================================================*/ PUBLIC int do_pause() { /* Perform the pause() system call. */ mp->mp_flags |= PAUSED; return(SUSPEND); } /*===========================================================================* * sig_proc * *===========================================================================*/ PUBLIC void sig_proc(rmp, signo) register struct mproc *rmp; /* pointer to the process to be signaled */ int signo; /* signal to send to process (1 to _NSIG) */ { /* Send a signal to a process. Check to see if the signal is to be caught, * ignored, tranformed into a message (for system processes) or blocked. * - If the signal is to be transformed into a message, request the KERNEL to * send the target process a system notification with the pending signal as an * argument. * - If the signal is to be caught, request the KERNEL to push a sigcontext * structure and a sigframe structure onto the catcher's stack. Also, KERNEL * will reset the program counter and stack pointer, so that when the process * next runs, it will be executing the signal handler. When the signal handler * returns, sigreturn(2) will be called. Then KERNEL will restore the signal * context from the sigcontext structure. * If there is insufficient stack space, kill the process. */ vir_bytes new_sp; int s; int slot; int sigflags; struct sigmsg sm; slot = (int) (rmp - mproc); if ((rmp->mp_flags & (IN_USE | ZOMBIE)) != IN_USE) { printf("PM: signal %d sent to %s process %d\n", signo, (rmp->mp_flags & ZOMBIE) ? "zombie" : "dead", slot); panic(__FILE__,"", NO_NUM); } if ((rmp->mp_flags & TRACED) && signo != SIGKILL) { /* A traced process has special handling. */ unpause(slot); stop_proc(rmp, signo); /* a signal causes it to stop */ return; } /* Some signals are ignored by default. */ if (sigismember(&rmp->mp_ignore, signo)) { return; } if (sigismember(&rmp->mp_sigmask, signo)) { /* Signal should be blocked. */ sigaddset(&rmp->mp_sigpending, signo); return; } sigflags = rmp->mp_sigact[signo].sa_flags; if (sigismember(&rmp->mp_catch, signo)) { if (rmp->mp_flags & SIGSUSPENDED) sm.sm_mask = rmp->mp_sigmask2; else sm.sm_mask = rmp->mp_sigmask; sm.sm_signo = signo; sm.sm_sighandler = (vir_bytes) rmp->mp_sigact[signo].sa_handler; sm.sm_sigreturn = rmp->mp_sigreturn; if ((s=get_stack_ptr(slot, &new_sp)) != OK) panic(__FILE__,"couldn't get new stack pointer",s); sm.sm_stkptr = new_sp; /* Make room for the sigcontext and sigframe struct. */ new_sp -= sizeof(struct sigcontext) + 3 * sizeof(char *) + 2 * sizeof(int); if (adjust(rmp, rmp->mp_seg[D].mem_len, new_sp) != OK) goto doterminate; rmp->mp_sigmask |= rmp->mp_sigact[signo].sa_mask; if (sigflags & SA_NODEFER) sigdelset(&rmp->mp_sigmask, signo); else sigaddset(&rmp->mp_sigmask, signo); if (sigflags & SA_RESETHAND) { sigdelset(&rmp->mp_catch, signo); rmp->mp_sigact[signo].sa_handler = SIG_DFL; } if (OK == (s=sys_sigsend(slot, &sm))) { sigdelset(&rmp->mp_sigpending, signo); /* If process is hanging on PAUSE, WAIT, SIGSUSPEND, tty, * pipe, etc., release it. */ unpause(slot); return; } panic(__FILE__, "warning, sys_sigsend failed", s); } else if (sigismember(&rmp->mp_sig2mess, signo)) { if (OK != (s=sys_kill(slot,signo))) panic(__FILE__, "warning, sys_kill failed", s); return; } doterminate: /* Signal should not or cannot be caught. Take default action. */ if (sigismember(&ign_sset, signo)) return; rmp->mp_sigstatus = (char) signo; if (sigismember(&core_sset, signo)) { /* Switch to the user's FS environment and dump core. */ tell_fs(CHDIR, slot, FALSE, 0); dump_core(rmp); } pm_exit(rmp, 0); /* terminate process */ } /*===========================================================================* * check_sig * *===========================================================================*/ PUBLIC int check_sig(proc_id, signo) pid_t proc_id; /* pid of proc to sig, or 0 or -1, or -pgrp */ int signo; /* signal to send to process (0 to _NSIG) */ { /* Check to see if it is possible to send a signal. The signal may have to be * sent to a group of processes. This routine is invoked by the KILL system * call, and also when the kernel catches a DEL or other signal. */ register struct mproc *rmp; int count; /* count # of signals sent */ int error_code; if (signo < 0 || signo > _NSIG) return(EINVAL); /* Return EINVAL for attempts to send SIGKILL to INIT alone. */ if (proc_id == INIT_PID && signo == SIGKILL) return(EINVAL); /* Search the proc table for processes to signal. (See forkexit.c about * pid magic.) */ count = 0; error_code = ESRCH; for (rmp = &mproc[0]; rmp < &mproc[NR_PROCS]; rmp++) { if (!(rmp->mp_flags & IN_USE)) continue; if ((rmp->mp_flags & ZOMBIE) && signo != 0) continue; /* Check for selection. */ if (proc_id > 0 && proc_id != rmp->mp_pid) continue; if (proc_id == 0 && mp->mp_procgrp != rmp->mp_procgrp) continue; if (proc_id == -1 && rmp->mp_pid <= INIT_PID) continue; if (proc_id < -1 && rmp->mp_procgrp != -proc_id) continue; /* Check for permission. */ if (mp->mp_effuid != SUPER_USER && mp->mp_realuid != rmp->mp_realuid && mp->mp_effuid != rmp->mp_realuid && mp->mp_realuid != rmp->mp_effuid && mp->mp_effuid != rmp->mp_effuid) { error_code = EPERM; continue; } count++; if (signo == 0) continue; /* 'sig_proc' will handle the disposition of the signal. The * signal may be caught, blocked, ignored, or cause process * termination, possibly with core dump. */ sig_proc(rmp, signo); if (proc_id > 0) break; /* only one process being signaled */ } /* If the calling process has killed itself, don't reply. */ if ((mp->mp_flags & (IN_USE | ZOMBIE)) != IN_USE) return(SUSPEND); return(count > 0 ? OK : error_code); } /*===========================================================================* * check_pending * *===========================================================================*/ PUBLIC void check_pending(rmp) register struct mproc *rmp; { /* Check to see if any pending signals have been unblocked. The * first such signal found is delivered. * * If multiple pending unmasked signals are found, they will be * delivered sequentially. * * There are several places in this file where the signal mask is * changed. At each such place, check_pending() should be called to * check for newly unblocked signals. */ int i; for (i = 1; i <= _NSIG; i++) { if (sigismember(&rmp->mp_sigpending, i) && !sigismember(&rmp->mp_sigmask, i)) { sigdelset(&rmp->mp_sigpending, i); sig_proc(rmp, i); break; } } } /*===========================================================================* * unpause * *===========================================================================*/ PRIVATE void unpause(pro) int pro; /* which process number */ { /* A signal is to be sent to a process. If that process is hanging on a * system call, the system call must be terminated with EINTR. Possible * calls are PAUSE, WAIT, READ and WRITE, the latter two for pipes and ttys. * First check if the process is hanging on an PM call. If not, tell FS, * so it can check for READs and WRITEs from pipes, ttys and the like. */ register struct mproc *rmp; rmp = &mproc[pro]; /* Check to see if process is hanging on a PAUSE, WAIT or SIGSUSPEND call. */ if (rmp->mp_flags & (PAUSED | WAITING | SIGSUSPENDED)) { rmp->mp_flags &= ~(PAUSED | WAITING | SIGSUSPENDED); setreply(pro, EINTR); return; } /* Process is not hanging on an PM call. Ask FS to take a look. */ tell_fs(UNPAUSE, pro, 0, 0); } /*===========================================================================* * dump_core * *===========================================================================*/ PRIVATE void dump_core(rmp) register struct mproc *rmp; /* whose core is to be dumped */ { /* Make a core dump on the file "core", if possible. */ int s, fd, seg, slot; vir_bytes current_sp; long trace_data, trace_off; slot = (int) (rmp - mproc); /* Can core file be written? We are operating in the user's FS environment, * so no special permission checks are needed. */ if (rmp->mp_realuid != rmp->mp_effuid) return; if ( (fd = open(core_name, O_WRONLY | O_CREAT | O_TRUNC | O_NONBLOCK, CORE_MODE)) < 0) return; rmp->mp_sigstatus |= DUMPED; /* Make sure the stack segment is up to date. * We don't want adjust() to fail unless current_sp is preposterous, * but it might fail due to safety checking. Also, we don't really want * the adjust() for sending a signal to fail due to safety checking. * Maybe make SAFETY_BYTES a parameter. */ if ((s=get_stack_ptr(slot, ¤t_sp)) != OK) panic(__FILE__,"couldn't get new stack pointer",s); adjust(rmp, rmp->mp_seg[D].mem_len, current_sp); /* Write the memory map of all segments to begin the core file. */ if (write(fd, (char *) rmp->mp_seg, (unsigned) sizeof rmp->mp_seg) != (unsigned) sizeof rmp->mp_seg) { close(fd); return; } /* Write out the whole kernel process table entry to get the regs. */ trace_off = 0; while (sys_trace(T_GETUSER, slot, trace_off, &trace_data) == OK) { if (write(fd, (char *) &trace_data, (unsigned) sizeof (long)) != (unsigned) sizeof (long)) { close(fd); return; } trace_off += sizeof (long); } /* Loop through segments and write the segments themselves out. */ for (seg = 0; seg < NR_LOCAL_SEGS; seg++) { rw_seg(1, fd, slot, seg, (phys_bytes) rmp->mp_seg[seg].mem_len << CLICK_SHIFT); } close(fd); }