/* bootimage.c - Load an image and start it. Author: Kees J. Bot * 19 Jan 1992 */ #define BIOS 1 /* Can only be used under the BIOS. */ #define nil 0 #define _POSIX_SOURCE 1 #define _MINIX 1 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rawfs.h" #include "image.h" #include "boot.h" static int block_size = 0; #define click_shift clck_shft /* 7 char clash with click_size. */ /* Some kernels have extra features: */ #define K_I386 0x0001 /* Make the 386 transition before you call me. */ #define K_CLAIM 0x0002 /* I will acquire my own bss pages, thank you. */ #define K_CHMEM 0x0004 /* This kernel listens to chmem for its stack size. */ #define K_HIGH 0x0008 /* Load mm, fs, etc. in extended memory. */ #define K_HDR 0x0010 /* No need to patch sizes, kernel uses the headers. */ #define K_RET 0x0020 /* Returns to the monitor on reboot. */ #define K_INT86 0x0040 /* Requires generic INT support. */ #define K_MEML 0x0080 /* Pass a list of free memory. */ #define K_BRET 0x0100 /* New monitor code on shutdown in boot parameters. */ #define K_ALL 0x01FF /* All feature bits this monitor supports. */ /* Data about the different processes. */ #define PROCESS_MAX 16 /* Must match the space in kernel/mpx.x */ #define KERNEL 0 /* The first process is the kernel. */ #define FS 2 /* The third must be fs. */ struct process { /* Per-process memory adresses. */ u32_t entry; /* Entry point. */ u32_t cs; /* Code segment. */ u32_t ds; /* Data segment. */ u32_t data; /* To access the data segment. */ u32_t end; /* End of this process, size = (end - cs). */ } process[PROCESS_MAX]; int n_procs; /* Number of processes. */ /* Magic numbers in process' data space. */ #define MAGIC_OFF 0 /* Offset of magic # in data seg. */ #define CLICK_OFF 2 /* Offset in kernel text to click_shift. */ #define FLAGS_OFF 4 /* Offset in kernel text to flags. */ #define KERNEL_D_MAGIC 0x526F /* Kernel magic number. */ /* Offsets of sizes to be patched into kernel and fs. */ #define P_SIZ_OFF 0 /* Process' sizes into kernel data. */ #define P_INIT_OFF 4 /* Init cs & sizes into fs data. */ #define between(a, c, z) ((unsigned) ((c) - (a)) <= ((z) - (a))) void pretty_image(char *image) /* Pretty print the name of the image to load. Translate '/' and '_' to * space, first letter goes uppercase. An 'r' before a digit prints as * 'revision'. E.g. 'minix/1.6.16r10' -> 'Minix 1.6.16 revision 10'. * The idea is that the part before the 'r' is the official Minix release * and after the 'r' you can put version numbers for your own changes. */ { int up= 0, c; while ((c= *image++) != 0) { if (c == '/' || c == '_') c= ' '; if (c == 'r' && between('0', *image, '9')) { printf(" revision "); continue; } if (!up && between('a', c, 'z')) c= c - 'a' + 'A'; if (between('A', c, 'Z')) up= 1; putch(c); } } void raw_clear(u32_t addr, u32_t count) /* Clear "count" bytes at absolute address "addr". */ { static char zeros[128]; u32_t dst; u32_t zct; zct= sizeof(zeros); if (zct > count) zct= count; raw_copy(addr, mon2abs(&zeros), zct); count-= zct; while (count > 0) { dst= addr + zct; if (zct > count) zct= count; raw_copy(dst, addr, zct); count-= zct; zct*= 2; } } /* Align a to a multiple of n (a power of 2): */ #define align(a, n) (((u32_t)(a) + ((u32_t)(n) - 1)) & ~((u32_t)(n) - 1)) unsigned click_shift; unsigned click_size; /* click_size = Smallest kernel memory object. */ unsigned k_flags; /* Not all kernels are created equal. */ u32_t reboot_code; /* Obsolete reboot code return pointer. */ int params2params(char *params, size_t psize) /* Repackage the environment settings for the kernel. */ { size_t i, n; environment *e; char *name, *value; dev_t dev; i= 0; for (e= env; e != nil; e= e->next) { name= e->name; value= e->value; if (!(e->flags & E_VAR)) continue; if (e->flags & E_DEV) { if ((dev= name2dev(value)) == -1) return 0; value= ul2a10((u16_t) dev); } n= i + strlen(name) + 1 + strlen(value) + 1; if (n < psize) { strcpy(params + i, name); strcat(params + i, "="); strcat(params + i, value); } i= n; } if (!(k_flags & K_MEML)) { /* Require old memory size variables. */ value= ul2a10((mem[0].base + mem[0].size) / 1024); n= i + 7 + 1 + strlen(value) + 1; if (n < psize) { strcpy(params + i, "memsize="); strcat(params + i, value); } i= n; value= ul2a10(mem[1].size / 1024); n= i + 7 + 1 + strlen(value) + 1; if (n < psize) { strcpy(params + i, "emssize="); strcat(params + i, value); } i= n; } if (i >= psize) { printf("Too many boot parameters\n"); return 0; } params[i]= 0; /* End marked with empty string. */ return 1; } void patch_sizes(void) /* Patch sizes of each process into kernel data space, kernel ds into kernel * text space, and sizes of init into data space of fs. All the patched * numbers are based on the kernel click size, not hardware segments. */ { u16_t text_size, data_size; int i; struct process *procp, *initp; u32_t doff; if (k_flags & K_HDR) return; /* Uses the headers. */ /* Patch text and data sizes of the processes into kernel data space. */ doff= process[KERNEL].data + P_SIZ_OFF; for (i= 0; i < n_procs; i++) { procp= &process[i]; text_size= (procp->ds - procp->cs) >> click_shift; data_size= (procp->end - procp->ds) >> click_shift; /* Two words per process, the text and data size: */ put_word(doff, text_size); doff+= 2; put_word(doff, data_size); doff+= 2; initp= procp; /* The last process must be init. */ } if (k_flags & (K_HIGH|K_MEML)) return; /* Doesn't need FS patching. */ /* Patch cs and sizes of init into fs data. */ put_word(process[FS].data + P_INIT_OFF+0, initp->cs >> click_shift); put_word(process[FS].data + P_INIT_OFF+2, text_size); put_word(process[FS].data + P_INIT_OFF+4, data_size); } int selected(char *name) /* True iff name has no label or the proper label. */ { char *colon, *label; int cmp; if ((colon= strchr(name, ':')) == nil) return 1; if ((label= b_value("label")) == nil) return 1; *colon= 0; cmp= strcmp(label, name); *colon= ':'; return cmp == 0; } u32_t proc_size(struct image_header *hdr) /* Return the size of a process in sectors as found in an image. */ { u32_t len= hdr->process.a_text; if (hdr->process.a_flags & A_PAL) len+= hdr->process.a_hdrlen; if (hdr->process.a_flags & A_SEP) len= align(len, SECTOR_SIZE); len= align(len + hdr->process.a_data, SECTOR_SIZE); return len >> SECTOR_SHIFT; } off_t image_off, image_size; u32_t (*vir2sec)(u32_t vsec); /* Where is a sector on disk? */ u32_t file_vir2sec(u32_t vsec) /* Translate a virtual sector number to an absolute disk sector. */ { off_t blk; if(!block_size) { errno = 0; return -1; } if ((blk= r_vir2abs(vsec / RATIO(block_size))) == -1) { errno= EIO; return -1; } return blk == 0 ? 0 : lowsec + blk * RATIO(block_size) + vsec % RATIO(block_size); } u32_t flat_vir2sec(u32_t vsec) /* Simply add an absolute sector offset to vsec. */ { return lowsec + image_off + vsec; } char *get_sector(u32_t vsec) /* Read a sector "vsec" from the image into memory and return its address. * Return nil on error. (This routine tries to read an entire track, so * the next request is usually satisfied from the track buffer.) */ { u32_t sec; int r; #define SECBUFS 16 static char buf[SECBUFS * SECTOR_SIZE]; static size_t count; /* Number of sectors in the buffer. */ static u32_t bufsec; /* First Sector now in the buffer. */ if (vsec == 0) count= 0; /* First sector; initialize. */ if ((sec= (*vir2sec)(vsec)) == -1) return nil; if (sec == 0) { /* A hole. */ count= 0; memset(buf, 0, SECTOR_SIZE); return buf; } /* Can we return a sector from the buffer? */ if ((sec - bufsec) < count) { return buf + ((size_t) (sec - bufsec) << SECTOR_SHIFT); } /* Not in the buffer. */ count= 0; bufsec= sec; /* Read a whole track if possible. */ while (++count < SECBUFS && !dev_boundary(bufsec + count)) { vsec++; if ((sec= (*vir2sec)(vsec)) == -1) break; /* Consecutive? */ if (sec != bufsec + count) break; } /* Actually read the sectors. */ if ((r= readsectors(mon2abs(buf), bufsec, count)) != 0) { readerr(bufsec, r); count= 0; errno= 0; return nil; } return buf; } int get_clickshift(u32_t ksec, struct image_header *hdr) /* Get the click shift and special flags from kernel text. */ { char *textp; if ((textp= get_sector(ksec)) == nil) return 0; if (hdr->process.a_flags & A_PAL) textp+= hdr->process.a_hdrlen; click_shift= * (u16_t *) (textp + CLICK_OFF); k_flags= * (u16_t *) (textp + FLAGS_OFF); if ((k_flags & ~K_ALL) != 0) { printf("%s requires features this monitor doesn't offer\n", hdr->name); return 0; } if (click_shift < HCLICK_SHIFT || click_shift > 16) { printf("%s click size is bad\n", hdr->name); errno= 0; return 0; } click_size= 1 << click_shift; return 1; } int get_segment(u32_t *vsec, long *size, u32_t *addr, u32_t limit) /* Read *size bytes starting at virtual sector *vsec to memory at *addr. */ { char *buf; size_t cnt, n; cnt= 0; while (*size > 0) { if (cnt == 0) { if ((buf= get_sector((*vsec)++)) == nil) return 0; cnt= SECTOR_SIZE; } if (*addr + click_size > limit) { errno= ENOMEM; return 0; } n= click_size; if (n > cnt) n= cnt; raw_copy(*addr, mon2abs(buf), n); *addr+= n; *size-= n; buf+= n; cnt-= n; } /* Zero extend to a click. */ n= align(*addr, click_size) - *addr; raw_clear(*addr, n); *addr+= n; *size-= n; return 1; } void exec_image(char *image) /* Get a Minix image into core, patch it up and execute. */ { char *delayvalue; int i; struct image_header hdr; char *buf; u32_t vsec, addr, limit, aout, n; struct process *procp; /* Process under construction. */ long a_text, a_data, a_bss, a_stack; int banner= 0; long processor= a2l(b_value("processor")); u16_t mode; char *console; char params[SECTOR_SIZE]; extern char *sbrk(int); /* The stack is pretty deep here, so check if heap and stack collide. */ (void) sbrk(0); printf("\nLoading "); pretty_image(image); printf(".\n\n"); vsec= 0; /* Load this sector from image next. */ addr= mem[0].base; /* Into this memory block. */ limit= mem[0].base + mem[0].size; if (limit > caddr) limit= caddr; /* Allocate and clear the area where the headers will be placed. */ aout = (limit -= PROCESS_MAX * A_MINHDR); /* Clear the area where the headers will be placed. */ raw_clear(aout, PROCESS_MAX * A_MINHDR); /* Read the many different processes: */ for (i= 0; vsec < image_size; i++) { if (i == PROCESS_MAX) { printf("There are more then %d programs in %s\n", PROCESS_MAX, image); errno= 0; return; } procp= &process[i]; /* Read header. */ for (;;) { if ((buf= get_sector(vsec++)) == nil) return; memcpy(&hdr, buf, sizeof(hdr)); if (BADMAG(hdr.process)) { errno= ENOEXEC; return; } /* Check the optional label on the process. */ if (selected(hdr.name)) break; /* Bad label, skip this process. */ vsec+= proc_size(&hdr); } /* Sanity check: an 8086 can't run a 386 kernel. */ if (hdr.process.a_cpu == A_I80386 && processor < 386) { printf("You can't run a 386 kernel on this 80%ld\n", processor); errno= 0; return; } /* Get the click shift from the kernel text segment. */ if (i == KERNEL) { if (!get_clickshift(vsec, &hdr)) return; addr= align(addr, click_size); } /* Save a copy of the header for the kernel, with a_syms * misused as the address where the process is loaded at. */ hdr.process.a_syms= addr; raw_copy(aout + i * A_MINHDR, mon2abs(&hdr.process), A_MINHDR); if (!banner) { printf(" cs ds text data bss"); if (k_flags & K_CHMEM) printf(" stack"); putch('\n'); banner= 1; } /* Segment sizes. */ a_text= hdr.process.a_text; a_data= hdr.process.a_data; a_bss= hdr.process.a_bss; if (k_flags & K_CHMEM) { a_stack= hdr.process.a_total - a_data - a_bss; if (!(hdr.process.a_flags & A_SEP)) a_stack-= a_text; } else { a_stack= 0; } /* Collect info about the process to be. */ procp->cs= addr; /* Process may be page aligned so that the text segment contains * the header, or have an unmapped zero page against vaxisms. */ procp->entry= hdr.process.a_entry; if (hdr.process.a_flags & A_PAL) a_text+= hdr.process.a_hdrlen; if (hdr.process.a_flags & A_UZP) procp->cs-= click_size; /* Separate I&D: two segments. Common I&D: only one. */ if (hdr.process.a_flags & A_SEP) { /* Read the text segment. */ if (!get_segment(&vsec, &a_text, &addr, limit)) return; /* The data segment follows. */ procp->ds= addr; if (hdr.process.a_flags & A_UZP) procp->ds-= click_size; procp->data= addr; } else { /* Add text to data to form one segment. */ procp->data= addr + a_text; procp->ds= procp->cs; a_data+= a_text; } /* Read the data segment. */ if (!get_segment(&vsec, &a_data, &addr, limit)) return; /* Make space for bss and stack unless... */ if (i != KERNEL && (k_flags & K_CLAIM)) a_bss= a_stack= 0; printf("%07lx %07lx %8ld %8ld %8ld", procp->cs, procp->ds, hdr.process.a_text, hdr.process.a_data, hdr.process.a_bss ); if (k_flags & K_CHMEM) printf(" %8ld", a_stack); printf(" %s\n", hdr.name); /* Note that a_data may be negative now, but we can look at it * as -a_data bss bytes. */ /* Compute the number of bss clicks left. */ a_bss+= a_data; n= align(a_bss, click_size); a_bss-= n; /* Zero out bss. */ if (addr + n > limit) { errno= ENOMEM; return; } raw_clear(addr, n); addr+= n; /* And the number of stack clicks. */ a_stack+= a_bss; n= align(a_stack, click_size); a_stack-= n; /* Add space for the stack. */ addr+= n; /* Process endpoint. */ procp->end= addr; if (i == 0 && (k_flags & K_HIGH)) { /* Load the rest in extended memory. */ addr= mem[1].base; limit= mem[1].base + mem[1].size; } } if ((n_procs= i) == 0) { printf("There are no programs in %s\n", image); errno= 0; return; } /* Check the kernel magic number. */ if (get_word(process[KERNEL].data + MAGIC_OFF) != KERNEL_D_MAGIC) { printf("Kernel magic number is incorrect\n"); errno= 0; return; } /* Patch sizes, etc. into kernel data. */ patch_sizes(); #if !DOS if (!(k_flags & K_MEML)) { /* Copy the a.out headers to the old place. */ raw_copy(HEADERPOS, aout, PROCESS_MAX * A_MINHDR); } #endif /* Do delay if wanted. */ if((delayvalue = b_value("bootdelay")) != nil > 0) { delay(delayvalue); } /* Run the trailer function just before starting Minix. */ if (!run_trailer()) { errno= 0; return; } /* Translate the boot parameters to what Minix likes best. */ if (!params2params(params, sizeof(params))) { errno= 0; return; } /* Set the video to the required mode. */ if ((console= b_value("console")) == nil || (mode= a2x(console)) == 0) { mode= strcmp(b_value("chrome"), "color") == 0 ? COLOR_MODE : MONO_MODE; } set_mode(mode); /* Close the disk. */ (void) dev_close(); /* Minix. */ minix(process[KERNEL].entry, process[KERNEL].cs, process[KERNEL].ds, params, sizeof(params), aout); if (!(k_flags & K_BRET)) { extern u32_t reboot_code; raw_copy(mon2abs(params), reboot_code, sizeof(params)); } parse_code(params); /* Return from Minix. Things may have changed, so assume nothing. */ fsok= -1; errno= 0; /* Read leftover character, if any. */ scan_keyboard(); } ino_t latest_version(char *version, struct stat *stp) /* Recursively read the current directory, selecting the newest image on * the way up. (One can't use r_stat while reading a directory.) */ { char name[NAME_MAX + 1]; ino_t ino, newest; time_t mtime; if ((ino= r_readdir(name)) == 0) { stp->st_mtime= 0; return 0; } newest= latest_version(version, stp); mtime= stp->st_mtime; r_stat(ino, stp); if (S_ISREG(stp->st_mode) && stp->st_mtime > mtime) { newest= ino; strcpy(version, name); } else { stp->st_mtime= mtime; } return newest; } char *select_image(char *image) /* Look image up on the filesystem, if it is a file then we're done, but * if its a directory then we want the newest file in that directory. If * it doesn't exist at all, then see if it is 'number:number' and get the * image from that absolute offset off the disk. */ { ino_t image_ino; struct stat st; image= strcpy(malloc((strlen(image) + 1 + NAME_MAX + 1) * sizeof(char)), image); fsok= r_super(&block_size) != 0; if (!fsok || (image_ino= r_lookup(ROOT_INO, image)) == 0) { char *size; if (numprefix(image, &size) && *size++ == ':' && numeric(size)) { vir2sec= flat_vir2sec; image_off= a2l(image); image_size= a2l(size); strcpy(image, "Minix"); return image; } if (!fsok) printf("No image selected\n"); else printf("Can't load %s: %s\n", image, unix_err(errno)); goto bail_out; } r_stat(image_ino, &st); if (!S_ISREG(st.st_mode)) { char *version= image + strlen(image); char dots[NAME_MAX + 1]; if (!S_ISDIR(st.st_mode)) { printf("%s: %s\n", image, unix_err(ENOTDIR)); goto bail_out; } (void) r_readdir(dots); (void) r_readdir(dots); /* "." & ".." */ *version++= '/'; *version= 0; if ((image_ino= latest_version(version, &st)) == 0) { printf("There are no images in %s\n", image); goto bail_out; } r_stat(image_ino, &st); } vir2sec= file_vir2sec; image_size= (st.st_size + SECTOR_SIZE - 1) >> SECTOR_SHIFT; return image; bail_out: free(image); return nil; } void bootminix(void) /* Load Minix and run it. (Given the size of this program it is surprising * that it ever gets to that.) */ { char *image; if ((image= select_image(b_value("image"))) == nil) return; exec_image(image); switch (errno) { case ENOEXEC: printf("%s contains a bad program header\n", image); break; case ENOMEM: printf("Not enough memory to load %s\n", image); break; case EIO: printf("Unsuspected EOF on %s\n", image); case 0: /* No error or error already reported. */; } free(image); } /* * $PchId: bootimage.c,v 1.10 2002/02/27 19:39:09 philip Exp $ */