[9] | 1 | /* libmath.b for bc for minix. */
|
---|
| 2 |
|
---|
| 3 | /* This file is part of bc written for MINIX.
|
---|
| 4 | Copyright (C) 1991, 1992 Free Software Foundation, Inc.
|
---|
| 5 |
|
---|
| 6 | This program is free software; you can redistribute it and/or modify
|
---|
| 7 | it under the terms of the GNU General Public License as published by
|
---|
| 8 | the Free Software Foundation; either version 2 of the License , or
|
---|
| 9 | (at your option) any later version.
|
---|
| 10 |
|
---|
| 11 | This program is distributed in the hope that it will be useful,
|
---|
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | GNU General Public License for more details.
|
---|
| 15 |
|
---|
| 16 | You should have received a copy of the GNU General Public License
|
---|
| 17 | along with this program; see the file COPYING. If not, write to
|
---|
| 18 | the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
| 19 |
|
---|
| 20 | You may contact the author by:
|
---|
| 21 | e-mail: phil@cs.wwu.edu
|
---|
| 22 | us-mail: Philip A. Nelson
|
---|
| 23 | Computer Science Department, 9062
|
---|
| 24 | Western Washington University
|
---|
| 25 | Bellingham, WA 98226-9062
|
---|
| 26 |
|
---|
| 27 | *************************************************************************/
|
---|
| 28 |
|
---|
| 29 |
|
---|
| 30 | scale = 20
|
---|
| 31 |
|
---|
| 32 | /* Uses the fact that e^x = (e^(x/2))^2
|
---|
| 33 | When x is small enough, we use the series:
|
---|
| 34 | e^x = 1 + x + x^2/2! + x^3/3! + ...
|
---|
| 35 | */
|
---|
| 36 |
|
---|
| 37 | define e(x) {
|
---|
| 38 | auto a, d, e, f, i, m, v, z
|
---|
| 39 |
|
---|
| 40 | /* Check the sign of x. */
|
---|
| 41 | if (x<0) {
|
---|
| 42 | m = 1
|
---|
| 43 | x = -x
|
---|
| 44 | }
|
---|
| 45 |
|
---|
| 46 | /* Precondition x. */
|
---|
| 47 | z = scale;
|
---|
| 48 | scale = 4 + z + .44*x;
|
---|
| 49 | while (x > 1) {
|
---|
| 50 | f += 1;
|
---|
| 51 | x /= 2;
|
---|
| 52 | }
|
---|
| 53 |
|
---|
| 54 | /* Initialize the variables. */
|
---|
| 55 | v = 1+x
|
---|
| 56 | a = x
|
---|
| 57 | d = 1
|
---|
| 58 |
|
---|
| 59 | for (i=2; 1; i++) {
|
---|
| 60 | e = (a *= x) / (d *= i)
|
---|
| 61 | if (e == 0) {
|
---|
| 62 | if (f>0) while (f--) v = v*v;
|
---|
| 63 | scale = z
|
---|
| 64 | if (m) return (1/v);
|
---|
| 65 | return (v/1);
|
---|
| 66 | }
|
---|
| 67 | v += e
|
---|
| 68 | }
|
---|
| 69 | }
|
---|
| 70 |
|
---|
| 71 | /* Natural log. Uses the fact that ln(x^2) = 2*ln(x)
|
---|
| 72 | The series used is:
|
---|
| 73 | ln(x) = 2(a+a^3/3+a^5/5+...) where a=(x-1)/(x+1)
|
---|
| 74 | */
|
---|
| 75 |
|
---|
| 76 | define l(x) {
|
---|
| 77 | auto e, f, i, m, n, v, z
|
---|
| 78 |
|
---|
| 79 | /* return something for the special case. */
|
---|
| 80 | if (x <= 0) return (1 - 10^scale)
|
---|
| 81 |
|
---|
| 82 | /* Precondition x to make .5 < x < 2.0. */
|
---|
| 83 | z = scale;
|
---|
| 84 | scale += 4;
|
---|
| 85 | f = 2;
|
---|
| 86 | i=0
|
---|
| 87 | while (x >= 2) { /* for large numbers */
|
---|
| 88 | f *= 2;
|
---|
| 89 | x = sqrt(x);
|
---|
| 90 | }
|
---|
| 91 | while (x <= .5) { /* for small numbers */
|
---|
| 92 | f *= 2;
|
---|
| 93 | x = sqrt(x);
|
---|
| 94 | }
|
---|
| 95 |
|
---|
| 96 | /* Set up the loop. */
|
---|
| 97 | v = n = (x-1)/(x+1)
|
---|
| 98 | m = n*n
|
---|
| 99 |
|
---|
| 100 | /* Sum the series. */
|
---|
| 101 | for (i=3; 1; i+=2) {
|
---|
| 102 | e = (n *= m) / i
|
---|
| 103 | if (e == 0) {
|
---|
| 104 | v = f*v
|
---|
| 105 | scale = z
|
---|
| 106 | return (v/1)
|
---|
| 107 | }
|
---|
| 108 | v += e
|
---|
| 109 | }
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | /* Sin(x) uses the standard series:
|
---|
| 113 | sin(x) = x - x^3/3! + x^5/5! - x^7/7! ... */
|
---|
| 114 |
|
---|
| 115 | define s(x) {
|
---|
| 116 | auto e, i, m, n, s, v, z
|
---|
| 117 |
|
---|
| 118 | /* precondition x. */
|
---|
| 119 | z = scale
|
---|
| 120 | scale = 1.1*z + 1;
|
---|
| 121 | v = a(1)
|
---|
| 122 | if (x < 0) {
|
---|
| 123 | m = 1;
|
---|
| 124 | x = -x;
|
---|
| 125 | }
|
---|
| 126 | scale = 0
|
---|
| 127 | n = (x / v + 2 )/4
|
---|
| 128 | x = x - 4*n*v
|
---|
| 129 | if (n%2) x = -x
|
---|
| 130 |
|
---|
| 131 | /* Do the loop. */
|
---|
| 132 | scale = z + 2;
|
---|
| 133 | v = e = x
|
---|
| 134 | s = -x*x
|
---|
| 135 | for (i=3; 1; i+=2) {
|
---|
| 136 | e *= s/(i*(i-1))
|
---|
| 137 | if (e == 0) {
|
---|
| 138 | scale = z
|
---|
| 139 | if (m) return (-v/1);
|
---|
| 140 | return (v/1);
|
---|
| 141 | }
|
---|
| 142 | v += e
|
---|
| 143 | }
|
---|
| 144 | }
|
---|
| 145 |
|
---|
| 146 | /* Cosine : cos(x) = sin(x+pi/2) */
|
---|
| 147 | define c(x) {
|
---|
| 148 | auto v;
|
---|
| 149 | scale += 1;
|
---|
| 150 | v = s(x+a(1)*2);
|
---|
| 151 | scale -= 1;
|
---|
| 152 | return (v/1);
|
---|
| 153 | }
|
---|
| 154 |
|
---|
| 155 | /* Arctan: Using the formula:
|
---|
| 156 | atan(x) = atan(c) + atan((x-c)/(1+xc)) for a small c (.2 here)
|
---|
| 157 | For under .2, use the series:
|
---|
| 158 | atan(x) = x - x^3/3 + x^5/5 - x^7/7 + ... */
|
---|
| 159 |
|
---|
| 160 | define a(x) {
|
---|
| 161 | auto a, e, f, i, m, n, s, v, z
|
---|
| 162 |
|
---|
| 163 | /* Special case and for fast answers */
|
---|
| 164 | if (x==1) {
|
---|
| 165 | if (scale <= 25) return (.7853981633974483096156608/1)
|
---|
| 166 | if (scale <= 40) return (.7853981633974483096156608458198757210492/1)
|
---|
| 167 | if (scale <= 60) \
|
---|
| 168 | return (.785398163397448309615660845819875721049292349843776455243736/1)
|
---|
| 169 | }
|
---|
| 170 | if (x==.2) {
|
---|
| 171 | if (scale <= 25) return (.1973955598498807583700497/1)
|
---|
| 172 | if (scale <= 40) return (.1973955598498807583700497651947902934475/1)
|
---|
| 173 | if (scale <= 60) \
|
---|
| 174 | return (.197395559849880758370049765194790293447585103787852101517688/1)
|
---|
| 175 | }
|
---|
| 176 |
|
---|
| 177 | /* Negative x? */
|
---|
| 178 | if (x<0) {
|
---|
| 179 | m = 1;
|
---|
| 180 | x = -x;
|
---|
| 181 | }
|
---|
| 182 |
|
---|
| 183 | /* Save the scale. */
|
---|
| 184 | z = scale;
|
---|
| 185 |
|
---|
| 186 | /* Note: a and f are known to be zero due to being auto vars. */
|
---|
| 187 | /* Calculate atan of a known number. */
|
---|
| 188 | if (x > .2) {
|
---|
| 189 | scale = z+4;
|
---|
| 190 | a = a(.2);
|
---|
| 191 | }
|
---|
| 192 |
|
---|
| 193 | /* Precondition x. */
|
---|
| 194 | scale = z+2;
|
---|
| 195 | while (x > .2) {
|
---|
| 196 | f += 1;
|
---|
| 197 | x = (x-.2) / (1+x*.2);
|
---|
| 198 | }
|
---|
| 199 |
|
---|
| 200 | /* Initialize the series. */
|
---|
| 201 | v = n = x;
|
---|
| 202 | s = -x*x;
|
---|
| 203 |
|
---|
| 204 | /* Calculate the series. */
|
---|
| 205 | for (i=3; 1; i+=2) {
|
---|
| 206 | e = (n *= s) / i;
|
---|
| 207 | if (e == 0) {
|
---|
| 208 | scale = z;
|
---|
| 209 | if (m) return ((f*a+v)/-1);
|
---|
| 210 | return ((f*a+v)/1);
|
---|
| 211 | }
|
---|
| 212 | v += e
|
---|
| 213 | }
|
---|
| 214 | }
|
---|
| 215 |
|
---|
| 216 |
|
---|
| 217 | /* Bessel function of integer order. Uses the following:
|
---|
| 218 | j(-n,x) = (-1)^n*j(n,x)
|
---|
| 219 | j(n,x) = x^n/(2^n*n!) * (1 - x^2/(2^2*1!*(n+1)) + x^4/(2^4*2!*(n+1)*(n+2))
|
---|
| 220 | - x^6/(2^6*3!*(n+1)*(n+2)*(n+3)) .... )
|
---|
| 221 | */
|
---|
| 222 | define j(n,x) {
|
---|
| 223 | auto a, d, e, f, i, m, s, v, z
|
---|
| 224 |
|
---|
| 225 | /* Make n an integer and check for negative n. */
|
---|
| 226 | z = scale;
|
---|
| 227 | scale = 0;
|
---|
| 228 | n = n/1;
|
---|
| 229 | if (n<0) {
|
---|
| 230 | n = -n;
|
---|
| 231 | if (n%2 == 1) m = 1;
|
---|
| 232 | }
|
---|
| 233 |
|
---|
| 234 | /* Compute the factor of x^n/(2^n*n!) */
|
---|
| 235 | f = 1;
|
---|
| 236 | for (i=2; i<=n; i++) f = f*i;
|
---|
| 237 | scale = 1.5*z;
|
---|
| 238 | f = x^n / 2^n / f;
|
---|
| 239 |
|
---|
| 240 | /* Initialize the loop .*/
|
---|
| 241 | v = e = 1;
|
---|
| 242 | s = -x*x/4
|
---|
| 243 | scale = 1.5*z
|
---|
| 244 |
|
---|
| 245 | /* The Loop.... */
|
---|
| 246 | for (i=1; 1; i++) {
|
---|
| 247 | e = e * s / i / (n+i);
|
---|
| 248 | if (e == 0) {
|
---|
| 249 | scale = z
|
---|
| 250 | if (m) return (-f*v/1);
|
---|
| 251 | return (f*v/1);
|
---|
| 252 | }
|
---|
| 253 | v += e;
|
---|
| 254 | }
|
---|
| 255 | }
|
---|