1 | /* number.c: Implements arbitrary precision numbers. */
|
---|
2 |
|
---|
3 | /* This file is part of bc written for MINIX.
|
---|
4 | Copyright (C) 1991, 1992 Free Software Foundation, Inc.
|
---|
5 |
|
---|
6 | This program is free software; you can redistribute it and/or modify
|
---|
7 | it under the terms of the GNU General Public License as published by
|
---|
8 | the Free Software Foundation; either version 2 of the License , or
|
---|
9 | (at your option) any later version.
|
---|
10 |
|
---|
11 | This program is distributed in the hope that it will be useful,
|
---|
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | GNU General Public License for more details.
|
---|
15 |
|
---|
16 | You should have received a copy of the GNU General Public License
|
---|
17 | along with this program; see the file COPYING. If not, write to
|
---|
18 | the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
19 |
|
---|
20 | You may contact the author by:
|
---|
21 | e-mail: phil@cs.wwu.edu
|
---|
22 | us-mail: Philip A. Nelson
|
---|
23 | Computer Science Department, 9062
|
---|
24 | Western Washington University
|
---|
25 | Bellingham, WA 98226-9062
|
---|
26 |
|
---|
27 | *************************************************************************/
|
---|
28 |
|
---|
29 | #include "bcdefs.h"
|
---|
30 | #include "proto.h"
|
---|
31 |
|
---|
32 | /* Storage used for special numbers. */
|
---|
33 | bc_num _zero_;
|
---|
34 | bc_num _one_;
|
---|
35 | bc_num _two_;
|
---|
36 |
|
---|
37 |
|
---|
38 | /* "Frees" a bc_num NUM. Actually decreases reference count and only
|
---|
39 | frees the storage if reference count is zero. */
|
---|
40 |
|
---|
41 | void
|
---|
42 | free_num (num)
|
---|
43 | bc_num *num;
|
---|
44 | {
|
---|
45 | if (*num == NULL) return;
|
---|
46 | (*num)->n_refs--;
|
---|
47 | if ((*num)->n_refs == 0) free(*num);
|
---|
48 | *num = NULL;
|
---|
49 | }
|
---|
50 |
|
---|
51 |
|
---|
52 | /* new_num allocates a number and sets fields to known values. */
|
---|
53 |
|
---|
54 | bc_num
|
---|
55 | new_num (length, scale)
|
---|
56 | int length, scale;
|
---|
57 | {
|
---|
58 | bc_num temp;
|
---|
59 |
|
---|
60 | temp = (bc_num) malloc (sizeof(bc_struct)+length+scale);
|
---|
61 | if (temp == NULL) out_of_memory ();
|
---|
62 | temp->n_sign = PLUS;
|
---|
63 | temp->n_len = length;
|
---|
64 | temp->n_scale = scale;
|
---|
65 | temp->n_refs = 1;
|
---|
66 | temp->n_value[0] = 0;
|
---|
67 | return temp;
|
---|
68 | }
|
---|
69 |
|
---|
70 |
|
---|
71 | /* Intitialize the number package! */
|
---|
72 |
|
---|
73 | void
|
---|
74 | init_numbers ()
|
---|
75 | {
|
---|
76 | _zero_ = new_num (1,0);
|
---|
77 | _one_ = new_num (1,0);
|
---|
78 | _one_->n_value[0] = 1;
|
---|
79 | _two_ = new_num (1,0);
|
---|
80 | _two_->n_value[0] = 2;
|
---|
81 | }
|
---|
82 |
|
---|
83 |
|
---|
84 | /* Make a copy of a number! Just increments the reference count! */
|
---|
85 |
|
---|
86 | bc_num
|
---|
87 | copy_num (num)
|
---|
88 | bc_num num;
|
---|
89 | {
|
---|
90 | num->n_refs++;
|
---|
91 | return num;
|
---|
92 | }
|
---|
93 |
|
---|
94 |
|
---|
95 | /* Initialize a number NUM by making it a copy of zero. */
|
---|
96 |
|
---|
97 | void
|
---|
98 | init_num (num)
|
---|
99 | bc_num *num;
|
---|
100 | {
|
---|
101 | *num = copy_num (_zero_);
|
---|
102 | }
|
---|
103 |
|
---|
104 |
|
---|
105 | /* Convert an integer VAL to a bc number NUM. */
|
---|
106 |
|
---|
107 | void
|
---|
108 | int2num (num, val)
|
---|
109 | bc_num *num;
|
---|
110 | int val;
|
---|
111 | {
|
---|
112 | char buffer[30];
|
---|
113 | char *bptr, *vptr;
|
---|
114 | int ix = 1;
|
---|
115 | char neg = 0;
|
---|
116 |
|
---|
117 | /* Sign. */
|
---|
118 | if (val < 0)
|
---|
119 | {
|
---|
120 | neg = 1;
|
---|
121 | val = -val;
|
---|
122 | }
|
---|
123 |
|
---|
124 | /* Get things going. */
|
---|
125 | bptr = buffer;
|
---|
126 | *bptr++ = val % 10;
|
---|
127 | val = val / 10;
|
---|
128 |
|
---|
129 | /* Extract remaining digits. */
|
---|
130 | while (val != 0)
|
---|
131 | {
|
---|
132 | *bptr++ = val % 10;
|
---|
133 | val = val / 10;
|
---|
134 | ix++; /* Count the digits. */
|
---|
135 | }
|
---|
136 |
|
---|
137 | /* Make the number. */
|
---|
138 | free_num (num);
|
---|
139 | *num = new_num (ix, 0);
|
---|
140 | if (neg) (*num)->n_sign = MINUS;
|
---|
141 |
|
---|
142 | /* Assign the digits. */
|
---|
143 | vptr = (*num)->n_value;
|
---|
144 | while (ix-- > 0)
|
---|
145 | *vptr++ = *--bptr;
|
---|
146 | }
|
---|
147 |
|
---|
148 |
|
---|
149 | /* Convert a number NUM to a long. The function returns only the integer
|
---|
150 | part of the number. For numbers that are too large to represent as
|
---|
151 | a long, this function returns a zero. This can be detected by checking
|
---|
152 | the NUM for zero after having a zero returned. */
|
---|
153 |
|
---|
154 | long
|
---|
155 | num2long (num)
|
---|
156 | bc_num num;
|
---|
157 | {
|
---|
158 | long val;
|
---|
159 | char *nptr;
|
---|
160 | int index;
|
---|
161 |
|
---|
162 | /* Extract the int value, ignore the fraction. */
|
---|
163 | val = 0;
|
---|
164 | nptr = num->n_value;
|
---|
165 | for (index=num->n_len; (index>0) && (val<=(LONG_MAX/10)); index--)
|
---|
166 | val = val*10 + *nptr++;
|
---|
167 |
|
---|
168 | /* Check for overflow. If overflow, return zero. */
|
---|
169 | if (index>0) val = 0;
|
---|
170 | if (val < 0) val = 0;
|
---|
171 |
|
---|
172 | /* Return the value. */
|
---|
173 | if (num->n_sign == PLUS)
|
---|
174 | return (val);
|
---|
175 | else
|
---|
176 | return (-val);
|
---|
177 | }
|
---|
178 |
|
---|
179 |
|
---|
180 | /* The following are some math routines for numbers. */
|
---|
181 | _PROTOTYPE(static int _do_compare, (bc_num n1, bc_num n2, int use_sign,
|
---|
182 | int ignore_last));
|
---|
183 | _PROTOTYPE(static void _rm_leading_zeros, (bc_num num));
|
---|
184 | _PROTOTYPE(static bc_num _do_add, (bc_num n1, bc_num n2));
|
---|
185 | _PROTOTYPE(static bc_num _do_sub, (bc_num n1, bc_num n2));
|
---|
186 | _PROTOTYPE(static void _one_mult, (unsigned char *num, int size, int digit,
|
---|
187 | unsigned char *result));
|
---|
188 |
|
---|
189 |
|
---|
190 |
|
---|
191 | /* Compare two bc numbers. Return value is 0 if equal, -1 if N1 is less
|
---|
192 | than N2 and +1 if N1 is greater than N2. If USE_SIGN is false, just
|
---|
193 | compare the magnitudes. */
|
---|
194 |
|
---|
195 | static int
|
---|
196 | _do_compare (n1, n2, use_sign, ignore_last)
|
---|
197 | bc_num n1, n2;
|
---|
198 | int use_sign;
|
---|
199 | int ignore_last;
|
---|
200 | {
|
---|
201 | char *n1ptr, *n2ptr;
|
---|
202 | int count;
|
---|
203 |
|
---|
204 | /* First, compare signs. */
|
---|
205 | if (use_sign && n1->n_sign != n2->n_sign)
|
---|
206 | {
|
---|
207 | if (n1->n_sign == PLUS)
|
---|
208 | return (1); /* Positive N1 > Negative N2 */
|
---|
209 | else
|
---|
210 | return (-1); /* Negative N1 < Positive N1 */
|
---|
211 | }
|
---|
212 |
|
---|
213 | /* Now compare the magnitude. */
|
---|
214 | if (n1->n_len != n2->n_len)
|
---|
215 | {
|
---|
216 | if (n1->n_len > n2->n_len)
|
---|
217 | {
|
---|
218 | /* Magnitude of n1 > n2. */
|
---|
219 | if (!use_sign || n1->n_sign == PLUS)
|
---|
220 | return (1);
|
---|
221 | else
|
---|
222 | return (-1);
|
---|
223 | }
|
---|
224 | else
|
---|
225 | {
|
---|
226 | /* Magnitude of n1 < n2. */
|
---|
227 | if (!use_sign || n1->n_sign == PLUS)
|
---|
228 | return (-1);
|
---|
229 | else
|
---|
230 | return (1);
|
---|
231 | }
|
---|
232 | }
|
---|
233 |
|
---|
234 | /* If we get here, they have the same number of integer digits.
|
---|
235 | check the integer part and the equal length part of the fraction. */
|
---|
236 | count = n1->n_len + MIN (n1->n_scale, n2->n_scale);
|
---|
237 | n1ptr = n1->n_value;
|
---|
238 | n2ptr = n2->n_value;
|
---|
239 |
|
---|
240 | while ((count > 0) && (*n1ptr == *n2ptr))
|
---|
241 | {
|
---|
242 | n1ptr++;
|
---|
243 | n2ptr++;
|
---|
244 | count--;
|
---|
245 | }
|
---|
246 | if (ignore_last && count == 1 && n1->n_scale == n2->n_scale)
|
---|
247 | return (0);
|
---|
248 | if (count != 0)
|
---|
249 | {
|
---|
250 | if (*n1ptr > *n2ptr)
|
---|
251 | {
|
---|
252 | /* Magnitude of n1 > n2. */
|
---|
253 | if (!use_sign || n1->n_sign == PLUS)
|
---|
254 | return (1);
|
---|
255 | else
|
---|
256 | return (-1);
|
---|
257 | }
|
---|
258 | else
|
---|
259 | {
|
---|
260 | /* Magnitude of n1 < n2. */
|
---|
261 | if (!use_sign || n1->n_sign == PLUS)
|
---|
262 | return (-1);
|
---|
263 | else
|
---|
264 | return (1);
|
---|
265 | }
|
---|
266 | }
|
---|
267 |
|
---|
268 | /* They are equal up to the last part of the equal part of the fraction. */
|
---|
269 | if (n1->n_scale != n2->n_scale)
|
---|
270 | if (n1->n_scale > n2->n_scale)
|
---|
271 | {
|
---|
272 | for (count = n1->n_scale-n2->n_scale; count>0; count--)
|
---|
273 | if (*n1ptr++ != 0)
|
---|
274 | {
|
---|
275 | /* Magnitude of n1 > n2. */
|
---|
276 | if (!use_sign || n1->n_sign == PLUS)
|
---|
277 | return (1);
|
---|
278 | else
|
---|
279 | return (-1);
|
---|
280 | }
|
---|
281 | }
|
---|
282 | else
|
---|
283 | {
|
---|
284 | for (count = n2->n_scale-n1->n_scale; count>0; count--)
|
---|
285 | if (*n2ptr++ != 0)
|
---|
286 | {
|
---|
287 | /* Magnitude of n1 < n2. */
|
---|
288 | if (!use_sign || n1->n_sign == PLUS)
|
---|
289 | return (-1);
|
---|
290 | else
|
---|
291 | return (1);
|
---|
292 | }
|
---|
293 | }
|
---|
294 |
|
---|
295 | /* They must be equal! */
|
---|
296 | return (0);
|
---|
297 | }
|
---|
298 |
|
---|
299 |
|
---|
300 | /* This is the "user callable" routine to compare numbers N1 and N2. */
|
---|
301 |
|
---|
302 | int
|
---|
303 | bc_compare (n1, n2)
|
---|
304 | bc_num n1, n2;
|
---|
305 | {
|
---|
306 | return _do_compare (n1, n2, TRUE, FALSE);
|
---|
307 | }
|
---|
308 |
|
---|
309 |
|
---|
310 | /* In some places we need to check if the number NUM is zero. */
|
---|
311 |
|
---|
312 | char
|
---|
313 | is_zero (num)
|
---|
314 | bc_num num;
|
---|
315 | {
|
---|
316 | int count;
|
---|
317 | char *nptr;
|
---|
318 |
|
---|
319 | /* Quick check. */
|
---|
320 | if (num == _zero_) return TRUE;
|
---|
321 |
|
---|
322 | /* Initialize */
|
---|
323 | count = num->n_len + num->n_scale;
|
---|
324 | nptr = num->n_value;
|
---|
325 |
|
---|
326 | /* The check */
|
---|
327 | while ((count > 0) && (*nptr++ == 0)) count--;
|
---|
328 |
|
---|
329 | if (count != 0)
|
---|
330 | return FALSE;
|
---|
331 | else
|
---|
332 | return TRUE;
|
---|
333 | }
|
---|
334 |
|
---|
335 |
|
---|
336 | /* In some places we need to check if the number is negative. */
|
---|
337 |
|
---|
338 | char
|
---|
339 | is_neg (num)
|
---|
340 | bc_num num;
|
---|
341 | {
|
---|
342 | return num->n_sign == MINUS;
|
---|
343 | }
|
---|
344 |
|
---|
345 |
|
---|
346 | /* For many things, we may have leading zeros in a number NUM.
|
---|
347 | _rm_leading_zeros just moves the data to the correct
|
---|
348 | place and adjusts the length. */
|
---|
349 |
|
---|
350 | static void
|
---|
351 | _rm_leading_zeros (num)
|
---|
352 | bc_num num;
|
---|
353 | {
|
---|
354 | int bytes;
|
---|
355 | char *dst, *src;
|
---|
356 |
|
---|
357 | /* Do a quick check to see if we need to do it. */
|
---|
358 | if (*num->n_value != 0) return;
|
---|
359 |
|
---|
360 | /* The first digit is 0, find the first non-zero digit in the 10's or
|
---|
361 | greater place. */
|
---|
362 | bytes = num->n_len;
|
---|
363 | src = num->n_value;
|
---|
364 | while (bytes > 1 && *src == 0) src++, bytes--;
|
---|
365 | num->n_len = bytes;
|
---|
366 | bytes += num->n_scale;
|
---|
367 | dst = num->n_value;
|
---|
368 | while (bytes-- > 0) *dst++ = *src++;
|
---|
369 |
|
---|
370 | }
|
---|
371 |
|
---|
372 |
|
---|
373 | /* Perform addition: N1 is added to N2 and the value is
|
---|
374 | returned. The signs of N1 and N2 are ignored. */
|
---|
375 |
|
---|
376 | static bc_num
|
---|
377 | _do_add (n1, n2)
|
---|
378 | bc_num n1, n2;
|
---|
379 | {
|
---|
380 | bc_num sum;
|
---|
381 | int sum_scale, sum_digits;
|
---|
382 | char *n1ptr, *n2ptr, *sumptr;
|
---|
383 | int carry, n1bytes, n2bytes;
|
---|
384 |
|
---|
385 | /* Prepare sum. */
|
---|
386 | sum_scale = MAX (n1->n_scale, n2->n_scale);
|
---|
387 | sum_digits = MAX (n1->n_len, n2->n_len) + 1;
|
---|
388 | sum = new_num (sum_digits,sum_scale);
|
---|
389 |
|
---|
390 | /* Start with the fraction part. Initialize the pointers. */
|
---|
391 | n1bytes = n1->n_scale;
|
---|
392 | n2bytes = n2->n_scale;
|
---|
393 | n1ptr = (char *) (n1->n_value + n1->n_len + n1bytes - 1);
|
---|
394 | n2ptr = (char *) (n2->n_value + n2->n_len + n2bytes - 1);
|
---|
395 | sumptr = (char *) (sum->n_value + sum_scale + sum_digits - 1);
|
---|
396 |
|
---|
397 | /* Add the fraction part. First copy the longer fraction.*/
|
---|
398 | if (n1bytes != n2bytes)
|
---|
399 | {
|
---|
400 | if (n1bytes > n2bytes)
|
---|
401 | while (n1bytes>n2bytes)
|
---|
402 | { *sumptr-- = *n1ptr--; n1bytes--;}
|
---|
403 | else
|
---|
404 | while (n2bytes>n1bytes)
|
---|
405 | { *sumptr-- = *n2ptr--; n2bytes--;}
|
---|
406 | }
|
---|
407 |
|
---|
408 | /* Now add the remaining fraction part and equal size integer parts. */
|
---|
409 | n1bytes += n1->n_len;
|
---|
410 | n2bytes += n2->n_len;
|
---|
411 | carry = 0;
|
---|
412 | while ((n1bytes > 0) && (n2bytes > 0))
|
---|
413 | {
|
---|
414 | *sumptr = *n1ptr-- + *n2ptr-- + carry;
|
---|
415 | if (*sumptr > 9)
|
---|
416 | {
|
---|
417 | carry = 1;
|
---|
418 | *sumptr -= 10;
|
---|
419 | }
|
---|
420 | else
|
---|
421 | carry = 0;
|
---|
422 | sumptr--;
|
---|
423 | n1bytes--;
|
---|
424 | n2bytes--;
|
---|
425 | }
|
---|
426 |
|
---|
427 | /* Now add carry the longer integer part. */
|
---|
428 | if (n1bytes == 0)
|
---|
429 | { n1bytes = n2bytes; n1ptr = n2ptr; }
|
---|
430 | while (n1bytes-- > 0)
|
---|
431 | {
|
---|
432 | *sumptr = *n1ptr-- + carry;
|
---|
433 | if (*sumptr > 9)
|
---|
434 | {
|
---|
435 | carry = 1;
|
---|
436 | *sumptr -= 10;
|
---|
437 | }
|
---|
438 | else
|
---|
439 | carry = 0;
|
---|
440 | sumptr--;
|
---|
441 | }
|
---|
442 |
|
---|
443 | /* Set final carry. */
|
---|
444 | if (carry == 1)
|
---|
445 | *sumptr += 1;
|
---|
446 |
|
---|
447 | /* Adjust sum and return. */
|
---|
448 | _rm_leading_zeros (sum);
|
---|
449 | return sum;
|
---|
450 | }
|
---|
451 |
|
---|
452 |
|
---|
453 | /* Perform subtraction: N2 is subtracted from N1 and the value is
|
---|
454 | returned. The signs of N1 and N2 are ignored. Also, N1 is
|
---|
455 | assumed to be larger than N2. */
|
---|
456 |
|
---|
457 | static bc_num
|
---|
458 | _do_sub (n1, n2)
|
---|
459 | bc_num n1, n2;
|
---|
460 | {
|
---|
461 | bc_num diff;
|
---|
462 | int diff_scale, diff_len;
|
---|
463 | int min_scale, min_len;
|
---|
464 | char *n1ptr, *n2ptr, *diffptr;
|
---|
465 | int borrow, count, val;
|
---|
466 |
|
---|
467 | /* Allocate temporary storage. */
|
---|
468 | diff_len = MAX (n1->n_len, n2->n_len);
|
---|
469 | diff_scale = MAX (n1->n_scale, n2->n_scale);
|
---|
470 | min_len = MIN (n1->n_len, n2->n_len);
|
---|
471 | min_scale = MIN (n1->n_scale, n2->n_scale);
|
---|
472 | diff = new_num (diff_len, diff_scale);
|
---|
473 |
|
---|
474 | /* Initialize the subtract. */
|
---|
475 | n1ptr = (char *) (n1->n_value + n1->n_len + n1->n_scale -1);
|
---|
476 | n2ptr = (char *) (n2->n_value + n2->n_len + n2->n_scale -1);
|
---|
477 | diffptr = (char *) (diff->n_value + diff_len + diff_scale -1);
|
---|
478 |
|
---|
479 | /* Subtract the numbers. */
|
---|
480 | borrow = 0;
|
---|
481 |
|
---|
482 | /* Take care of the longer scaled number. */
|
---|
483 | if (n1->n_scale != min_scale)
|
---|
484 | {
|
---|
485 | /* n1 has the longer scale */
|
---|
486 | for (count = n1->n_scale - min_scale; count > 0; count--)
|
---|
487 | *diffptr-- = *n1ptr--;
|
---|
488 | }
|
---|
489 | else
|
---|
490 | {
|
---|
491 | /* n2 has the longer scale */
|
---|
492 | for (count = n2->n_scale - min_scale; count > 0; count--)
|
---|
493 | {
|
---|
494 | val = - *n2ptr-- - borrow;
|
---|
495 | if (val < 0)
|
---|
496 | {
|
---|
497 | val += 10;
|
---|
498 | borrow = 1;
|
---|
499 | }
|
---|
500 | else
|
---|
501 | borrow = 0;
|
---|
502 | *diffptr-- = val;
|
---|
503 | }
|
---|
504 | }
|
---|
505 |
|
---|
506 | /* Now do the equal length scale and integer parts. */
|
---|
507 |
|
---|
508 | for (count = 0; count < min_len + min_scale; count++)
|
---|
509 | {
|
---|
510 | val = *n1ptr-- - *n2ptr-- - borrow;
|
---|
511 | if (val < 0)
|
---|
512 | {
|
---|
513 | val += 10;
|
---|
514 | borrow = 1;
|
---|
515 | }
|
---|
516 | else
|
---|
517 | borrow = 0;
|
---|
518 | *diffptr-- = val;
|
---|
519 | }
|
---|
520 |
|
---|
521 | /* If n1 has more digits then n2, we now do that subtract. */
|
---|
522 | if (diff_len != min_len)
|
---|
523 | {
|
---|
524 | for (count = diff_len - min_len; count > 0; count--)
|
---|
525 | {
|
---|
526 | val = *n1ptr-- - borrow;
|
---|
527 | if (val < 0)
|
---|
528 | {
|
---|
529 | val += 10;
|
---|
530 | borrow = 1;
|
---|
531 | }
|
---|
532 | else
|
---|
533 | borrow = 0;
|
---|
534 | *diffptr-- = val;
|
---|
535 | }
|
---|
536 | }
|
---|
537 |
|
---|
538 | /* Clean up and return. */
|
---|
539 | _rm_leading_zeros (diff);
|
---|
540 | return diff;
|
---|
541 | }
|
---|
542 |
|
---|
543 |
|
---|
544 | /* Here is the full add routine that takes care of negative numbers.
|
---|
545 | N1 is added to N2 and the result placed into RESULT. */
|
---|
546 |
|
---|
547 | void
|
---|
548 | bc_add ( n1, n2, result)
|
---|
549 | bc_num n1, n2, *result;
|
---|
550 | {
|
---|
551 | bc_num sum;
|
---|
552 | int cmp_res;
|
---|
553 |
|
---|
554 | if (n1->n_sign == n2->n_sign)
|
---|
555 | {
|
---|
556 | sum = _do_add (n1, n2);
|
---|
557 | sum->n_sign = n1->n_sign;
|
---|
558 | }
|
---|
559 | else
|
---|
560 | {
|
---|
561 | /* subtraction must be done. */
|
---|
562 | cmp_res = _do_compare (n1, n2, FALSE, FALSE); /* Compare magnitudes. */
|
---|
563 | switch (cmp_res)
|
---|
564 | {
|
---|
565 | case -1:
|
---|
566 | /* n1 is less than n2, subtract n1 from n2. */
|
---|
567 | sum = _do_sub (n2, n1);
|
---|
568 | sum->n_sign = n2->n_sign;
|
---|
569 | break;
|
---|
570 | case 0:
|
---|
571 | /* They are equal! return zero! */
|
---|
572 | sum = copy_num (_zero_);
|
---|
573 | break;
|
---|
574 | case 1:
|
---|
575 | /* n2 is less than n1, subtract n2 from n1. */
|
---|
576 | sum = _do_sub (n1, n2);
|
---|
577 | sum->n_sign = n1->n_sign;
|
---|
578 | }
|
---|
579 | }
|
---|
580 |
|
---|
581 | /* Clean up and return. */
|
---|
582 | free_num (result);
|
---|
583 | *result = sum;
|
---|
584 | }
|
---|
585 |
|
---|
586 |
|
---|
587 | /* Here is the full subtract routine that takes care of negative numbers.
|
---|
588 | N2 is subtracted from N1 and the result placed in RESULT. */
|
---|
589 |
|
---|
590 | void
|
---|
591 | bc_sub ( n1, n2, result)
|
---|
592 | bc_num n1, n2, *result;
|
---|
593 | {
|
---|
594 | bc_num diff;
|
---|
595 | int cmp_res;
|
---|
596 |
|
---|
597 | if (n1->n_sign != n2->n_sign)
|
---|
598 | {
|
---|
599 | diff = _do_add (n1, n2);
|
---|
600 | diff->n_sign = n1->n_sign;
|
---|
601 | }
|
---|
602 | else
|
---|
603 | {
|
---|
604 | /* subtraction must be done. */
|
---|
605 | cmp_res = _do_compare (n1, n2, FALSE, FALSE); /* Compare magnitudes. */
|
---|
606 | switch (cmp_res)
|
---|
607 | {
|
---|
608 | case -1:
|
---|
609 | /* n1 is less than n2, subtract n1 from n2. */
|
---|
610 | diff = _do_sub (n2, n1);
|
---|
611 | diff->n_sign = (n2->n_sign == PLUS ? MINUS : PLUS);
|
---|
612 | break;
|
---|
613 | case 0:
|
---|
614 | /* They are equal! return zero! */
|
---|
615 | diff = copy_num (_zero_);
|
---|
616 | break;
|
---|
617 | case 1:
|
---|
618 | /* n2 is less than n1, subtract n2 from n1. */
|
---|
619 | diff = _do_sub (n1, n2);
|
---|
620 | diff->n_sign = n1->n_sign;
|
---|
621 | break;
|
---|
622 | }
|
---|
623 | }
|
---|
624 |
|
---|
625 | /* Clean up and return. */
|
---|
626 | free_num (result);
|
---|
627 | *result = diff;
|
---|
628 | }
|
---|
629 |
|
---|
630 |
|
---|
631 | /* The multiply routine. N2 time N1 is put int PROD with the scale of
|
---|
632 | the result being MIN(N2 scale+N1 scale, MAX (SCALE, N2 scale, N1 scale)).
|
---|
633 | */
|
---|
634 |
|
---|
635 | void
|
---|
636 | bc_multiply (n1, n2, prod, scale)
|
---|
637 | bc_num n1, n2, *prod;
|
---|
638 | int scale;
|
---|
639 | {
|
---|
640 | bc_num pval; /* For the working storage. */
|
---|
641 | char *n1ptr, *n2ptr, *pvptr; /* Work pointers. */
|
---|
642 | char *n1end, *n2end; /* To the end of n1 and n2. */
|
---|
643 |
|
---|
644 | int indx;
|
---|
645 | int len1, len2, total_digits;
|
---|
646 | long sum;
|
---|
647 | int full_scale, prod_scale;
|
---|
648 | int toss;
|
---|
649 |
|
---|
650 | /* Initialize things. */
|
---|
651 | len1 = n1->n_len + n1->n_scale;
|
---|
652 | len2 = n2->n_len + n2->n_scale;
|
---|
653 | total_digits = len1 + len2;
|
---|
654 | full_scale = n1->n_scale + n2->n_scale;
|
---|
655 | prod_scale = MIN(full_scale,MAX(scale,MAX(n1->n_scale,n2->n_scale)));
|
---|
656 | toss = full_scale - prod_scale;
|
---|
657 | pval = new_num (total_digits-full_scale, prod_scale);
|
---|
658 | pval->n_sign = ( n1->n_sign == n2->n_sign ? PLUS : MINUS );
|
---|
659 | n1end = (char *) (n1->n_value + len1 - 1);
|
---|
660 | n2end = (char *) (n2->n_value + len2 - 1);
|
---|
661 | pvptr = (char *) (pval->n_value + total_digits - toss - 1);
|
---|
662 | sum = 0;
|
---|
663 |
|
---|
664 | /* Here are the loops... */
|
---|
665 | for (indx = 0; indx < toss; indx++)
|
---|
666 | {
|
---|
667 | n1ptr = (char *) (n1end - MAX(0, indx-len2+1));
|
---|
668 | n2ptr = (char *) (n2end - MIN(indx, len2-1));
|
---|
669 | while ((n1ptr >= n1->n_value) && (n2ptr <= n2end))
|
---|
670 | sum += *n1ptr-- * *n2ptr++;
|
---|
671 | sum = sum / 10;
|
---|
672 | }
|
---|
673 | for ( ; indx < total_digits-1; indx++)
|
---|
674 | {
|
---|
675 | n1ptr = (char *) (n1end - MAX(0, indx-len2+1));
|
---|
676 | n2ptr = (char *) (n2end - MIN(indx, len2-1));
|
---|
677 | while ((n1ptr >= n1->n_value) && (n2ptr <= n2end))
|
---|
678 | sum += *n1ptr-- * *n2ptr++;
|
---|
679 | *pvptr-- = sum % 10;
|
---|
680 | sum = sum / 10;
|
---|
681 | }
|
---|
682 | *pvptr-- = sum;
|
---|
683 |
|
---|
684 | /* Assign to prod and clean up the number. */
|
---|
685 | free_num (prod);
|
---|
686 | *prod = pval;
|
---|
687 | _rm_leading_zeros (*prod);
|
---|
688 | if (is_zero (*prod))
|
---|
689 | (*prod)->n_sign = PLUS;
|
---|
690 | }
|
---|
691 |
|
---|
692 |
|
---|
693 | /* Some utility routines for the divide: First a one digit multiply.
|
---|
694 | NUM (with SIZE digits) is multiplied by DIGIT and the result is
|
---|
695 | placed into RESULT. It is written so that NUM and RESULT can be
|
---|
696 | the same pointers. */
|
---|
697 |
|
---|
698 | static void
|
---|
699 | _one_mult (num, size, digit, result)
|
---|
700 | unsigned char *num;
|
---|
701 | int size, digit;
|
---|
702 | unsigned char *result;
|
---|
703 | {
|
---|
704 | int carry, value;
|
---|
705 | unsigned char *nptr, *rptr;
|
---|
706 |
|
---|
707 | if (digit == 0)
|
---|
708 | memset (result, 0, size);
|
---|
709 | else
|
---|
710 | {
|
---|
711 | if (digit == 1)
|
---|
712 | memcpy (result, num, size);
|
---|
713 | else
|
---|
714 | {
|
---|
715 | /* Initialize */
|
---|
716 | nptr = (unsigned char *) (num+size-1);
|
---|
717 | rptr = (unsigned char *) (result+size-1);
|
---|
718 | carry = 0;
|
---|
719 |
|
---|
720 | while (size-- > 0)
|
---|
721 | {
|
---|
722 | value = *nptr-- * digit + carry;
|
---|
723 | *rptr-- = value % 10;
|
---|
724 | carry = value / 10;
|
---|
725 | }
|
---|
726 |
|
---|
727 | if (carry != 0) *rptr = carry;
|
---|
728 | }
|
---|
729 | }
|
---|
730 | }
|
---|
731 |
|
---|
732 |
|
---|
733 | /* The full division routine. This computes N1 / N2. It returns
|
---|
734 | 0 if the division is ok and the result is in QUOT. The number of
|
---|
735 | digits after the decimal point is SCALE. It returns -1 if division
|
---|
736 | by zero is tried. The algorithm is found in Knuth Vol 2. p237. */
|
---|
737 |
|
---|
738 | int
|
---|
739 | bc_divide (n1, n2, quot, scale)
|
---|
740 | bc_num n1, n2, *quot;
|
---|
741 | int scale;
|
---|
742 | {
|
---|
743 | bc_num qval;
|
---|
744 | unsigned char *num1, *num2;
|
---|
745 | unsigned char *ptr1, *ptr2, *n2ptr, *qptr;
|
---|
746 | int scale1, val;
|
---|
747 | unsigned int len1, len2, scale2, qdigits, extra, count;
|
---|
748 | unsigned int qdig, qguess, borrow, carry;
|
---|
749 | unsigned char *mval;
|
---|
750 | char zero;
|
---|
751 | unsigned int norm;
|
---|
752 |
|
---|
753 | /* Test for divide by zero. */
|
---|
754 | if (is_zero (n2)) return -1;
|
---|
755 |
|
---|
756 | /* Test for divide by 1. If it is we must truncate. */
|
---|
757 | if (n2->n_scale == 0)
|
---|
758 | {
|
---|
759 | if (n2->n_len == 1 && *n2->n_value == 1)
|
---|
760 | {
|
---|
761 | qval = new_num (n1->n_len, scale);
|
---|
762 | qval->n_sign = (n1->n_sign == n2->n_sign ? PLUS : MINUS);
|
---|
763 | memset (&qval->n_value[n1->n_len],0,scale);
|
---|
764 | memcpy (qval->n_value, n1->n_value,
|
---|
765 | n1->n_len + MIN(n1->n_scale,scale));
|
---|
766 | free_num (quot);
|
---|
767 | *quot = qval;
|
---|
768 | }
|
---|
769 | }
|
---|
770 |
|
---|
771 | /* Set up the divide. Move the decimal point on n1 by n2's scale.
|
---|
772 | Remember, zeros on the end of num2 are wasted effort for dividing. */
|
---|
773 | scale2 = n2->n_scale;
|
---|
774 | n2ptr = (unsigned char *) n2->n_value+n2->n_len+scale2-1;
|
---|
775 | while ((scale2 > 0) && (*n2ptr-- == 0)) scale2--;
|
---|
776 |
|
---|
777 | len1 = n1->n_len + scale2;
|
---|
778 | scale1 = n1->n_scale - scale2;
|
---|
779 | if (scale1 < scale)
|
---|
780 | extra = scale - scale1;
|
---|
781 | else
|
---|
782 | extra = 0;
|
---|
783 | num1 = (unsigned char *) malloc (n1->n_len+n1->n_scale+extra+2);
|
---|
784 | if (num1 == NULL) out_of_memory();
|
---|
785 | memset (num1, 0, n1->n_len+n1->n_scale+extra+2);
|
---|
786 | memcpy (num1+1, n1->n_value, n1->n_len+n1->n_scale);
|
---|
787 |
|
---|
788 | len2 = n2->n_len + scale2;
|
---|
789 | num2 = (unsigned char *) malloc (len2+1);
|
---|
790 | if (num2 == NULL) out_of_memory();
|
---|
791 | memcpy (num2, n2->n_value, len2);
|
---|
792 | *(num2+len2) = 0;
|
---|
793 | n2ptr = num2;
|
---|
794 | while (*n2ptr == 0)
|
---|
795 | {
|
---|
796 | n2ptr++;
|
---|
797 | len2--;
|
---|
798 | }
|
---|
799 |
|
---|
800 | /* Calculate the number of quotient digits. */
|
---|
801 | if (len2 > len1+scale)
|
---|
802 | {
|
---|
803 | qdigits = scale+1;
|
---|
804 | zero = TRUE;
|
---|
805 | }
|
---|
806 | else
|
---|
807 | {
|
---|
808 | zero = FALSE;
|
---|
809 | if (len2>len1)
|
---|
810 | qdigits = scale+1; /* One for the zero integer part. */
|
---|
811 | else
|
---|
812 | qdigits = len1-len2+scale+1;
|
---|
813 | }
|
---|
814 |
|
---|
815 | /* Allocate and zero the storage for the quotient. */
|
---|
816 | qval = new_num (qdigits-scale,scale);
|
---|
817 | memset (qval->n_value, 0, qdigits);
|
---|
818 |
|
---|
819 | /* Allocate storage for the temporary storage mval. */
|
---|
820 | mval = (unsigned char *) malloc (len2+1);
|
---|
821 | if (mval == NULL) out_of_memory ();
|
---|
822 |
|
---|
823 | /* Now for the full divide algorithm. */
|
---|
824 | if (!zero)
|
---|
825 | {
|
---|
826 | /* Normalize */
|
---|
827 | norm = 10 / ((int)*n2ptr + 1);
|
---|
828 | if (norm != 1)
|
---|
829 | {
|
---|
830 | _one_mult (num1, len1+scale1+extra+1, norm, num1);
|
---|
831 | _one_mult (n2ptr, len2, norm, n2ptr);
|
---|
832 | }
|
---|
833 |
|
---|
834 | /* Initialize divide loop. */
|
---|
835 | qdig = 0;
|
---|
836 | if (len2 > len1)
|
---|
837 | qptr = (unsigned char *) qval->n_value+len2-len1;
|
---|
838 | else
|
---|
839 | qptr = (unsigned char *) qval->n_value;
|
---|
840 |
|
---|
841 | /* Loop */
|
---|
842 | while (qdig <= len1+scale-len2)
|
---|
843 | {
|
---|
844 | /* Calculate the quotient digit guess. */
|
---|
845 | if (*n2ptr == num1[qdig])
|
---|
846 | qguess = 9;
|
---|
847 | else
|
---|
848 | qguess = (num1[qdig]*10 + num1[qdig+1]) / *n2ptr;
|
---|
849 |
|
---|
850 | /* Test qguess. */
|
---|
851 | if (n2ptr[1]*qguess >
|
---|
852 | (num1[qdig]*10 + num1[qdig+1] - *n2ptr*qguess)*10
|
---|
853 | + num1[qdig+2])
|
---|
854 | {
|
---|
855 | qguess--;
|
---|
856 | /* And again. */
|
---|
857 | if (n2ptr[1]*qguess >
|
---|
858 | (num1[qdig]*10 + num1[qdig+1] - *n2ptr*qguess)*10
|
---|
859 | + num1[qdig+2])
|
---|
860 | qguess--;
|
---|
861 | }
|
---|
862 |
|
---|
863 | /* Multiply and subtract. */
|
---|
864 | borrow = 0;
|
---|
865 | if (qguess != 0)
|
---|
866 | {
|
---|
867 | *mval = 0;
|
---|
868 | _one_mult (n2ptr, len2, qguess, mval+1);
|
---|
869 | ptr1 = (unsigned char *) num1+qdig+len2;
|
---|
870 | ptr2 = (unsigned char *) mval+len2;
|
---|
871 | for (count = 0; count < len2+1; count++)
|
---|
872 | {
|
---|
873 | val = (int) *ptr1 - (int) *ptr2-- - borrow;
|
---|
874 | if (val < 0)
|
---|
875 | {
|
---|
876 | val += 10;
|
---|
877 | borrow = 1;
|
---|
878 | }
|
---|
879 | else
|
---|
880 | borrow = 0;
|
---|
881 | *ptr1-- = val;
|
---|
882 | }
|
---|
883 | }
|
---|
884 |
|
---|
885 | /* Test for negative result. */
|
---|
886 | if (borrow == 1)
|
---|
887 | {
|
---|
888 | qguess--;
|
---|
889 | ptr1 = (unsigned char *) num1+qdig+len2;
|
---|
890 | ptr2 = (unsigned char *) n2ptr+len2-1;
|
---|
891 | carry = 0;
|
---|
892 | for (count = 0; count < len2; count++)
|
---|
893 | {
|
---|
894 | val = (int) *ptr1 + (int) *ptr2-- + carry;
|
---|
895 | if (val > 9)
|
---|
896 | {
|
---|
897 | val -= 10;
|
---|
898 | carry = 1;
|
---|
899 | }
|
---|
900 | else
|
---|
901 | carry = 0;
|
---|
902 | *ptr1-- = val;
|
---|
903 | }
|
---|
904 | if (carry == 1) *ptr1 = (*ptr1 + 1) % 10;
|
---|
905 | }
|
---|
906 |
|
---|
907 | /* We now know the quotient digit. */
|
---|
908 | *qptr++ = qguess;
|
---|
909 | qdig++;
|
---|
910 | }
|
---|
911 | }
|
---|
912 |
|
---|
913 | /* Clean up and return the number. */
|
---|
914 | qval->n_sign = ( n1->n_sign == n2->n_sign ? PLUS : MINUS );
|
---|
915 | if (is_zero (qval)) qval->n_sign = PLUS;
|
---|
916 | _rm_leading_zeros (qval);
|
---|
917 | free_num (quot);
|
---|
918 | *quot = qval;
|
---|
919 |
|
---|
920 | /* Clean up temporary storage. */
|
---|
921 | free (mval);
|
---|
922 | free (num1);
|
---|
923 | free (num2);
|
---|
924 |
|
---|
925 | return 0; /* Everything is OK. */
|
---|
926 | }
|
---|
927 |
|
---|
928 |
|
---|
929 | /* Modulo for numbers. This computes NUM1 % NUM2 and puts the
|
---|
930 | result in RESULT. */
|
---|
931 |
|
---|
932 | int
|
---|
933 | bc_modulo (num1, num2, result, scale)
|
---|
934 | bc_num num1, num2, *result;
|
---|
935 | int scale;
|
---|
936 | {
|
---|
937 | bc_num temp;
|
---|
938 | int rscale;
|
---|
939 |
|
---|
940 | /* Check for correct numbers. */
|
---|
941 | if (is_zero (num2)) return -1;
|
---|
942 |
|
---|
943 | /* Calculate final scale. */
|
---|
944 | rscale = MAX (num1->n_scale, num2->n_scale+scale);
|
---|
945 | init_num (&temp);
|
---|
946 |
|
---|
947 | /* Calculate it. */
|
---|
948 | bc_divide (num1, num2, &temp, scale);
|
---|
949 | bc_multiply (temp, num2, &temp, rscale);
|
---|
950 | bc_sub (num1, temp, result);
|
---|
951 | free_num (&temp);
|
---|
952 |
|
---|
953 | return 0; /* Everything is OK. */
|
---|
954 | }
|
---|
955 |
|
---|
956 |
|
---|
957 | /* Raise NUM1 to the NUM2 power. The result is placed in RESULT.
|
---|
958 | Maximum exponent is LONG_MAX. If a NUM2 is not an integer,
|
---|
959 | only the integer part is used. */
|
---|
960 |
|
---|
961 | void
|
---|
962 | bc_raise (num1, num2, result, scale)
|
---|
963 | bc_num num1, num2, *result;
|
---|
964 | int scale;
|
---|
965 | {
|
---|
966 | bc_num temp, power;
|
---|
967 | long exponent;
|
---|
968 | int rscale;
|
---|
969 | char neg;
|
---|
970 |
|
---|
971 | /* Check the exponent for scale digits and convert to a long. */
|
---|
972 | if (num2->n_scale != 0)
|
---|
973 | rt_warn ("non-zero scale in exponent");
|
---|
974 | exponent = num2long (num2);
|
---|
975 | if (exponent == 0 && (num2->n_len > 1 || num2->n_value[0] != 0))
|
---|
976 | rt_error ("exponent too large in raise");
|
---|
977 |
|
---|
978 | /* Special case if exponent is a zero. */
|
---|
979 | if (exponent == 0)
|
---|
980 | {
|
---|
981 | free_num (result);
|
---|
982 | *result = copy_num (_one_);
|
---|
983 | return;
|
---|
984 | }
|
---|
985 |
|
---|
986 | /* Other initializations. */
|
---|
987 | if (exponent < 0)
|
---|
988 | {
|
---|
989 | neg = TRUE;
|
---|
990 | exponent = -exponent;
|
---|
991 | rscale = scale;
|
---|
992 | }
|
---|
993 | else
|
---|
994 | {
|
---|
995 | neg = FALSE;
|
---|
996 | rscale = MIN (num1->n_scale*exponent, MAX(scale, num1->n_scale));
|
---|
997 | }
|
---|
998 | temp = copy_num (_one_);
|
---|
999 | power = copy_num (num1);
|
---|
1000 |
|
---|
1001 | /* Do the calculation. */
|
---|
1002 | while (exponent != 0)
|
---|
1003 | {
|
---|
1004 | if (exponent & 1 != 0)
|
---|
1005 | bc_multiply (temp, power, &temp, rscale);
|
---|
1006 | bc_multiply (power, power, &power, rscale);
|
---|
1007 | exponent = exponent >> 1;
|
---|
1008 | }
|
---|
1009 |
|
---|
1010 | /* Assign the value. */
|
---|
1011 | if (neg)
|
---|
1012 | {
|
---|
1013 | bc_divide (_one_, temp, result, rscale);
|
---|
1014 | free_num (&temp);
|
---|
1015 | }
|
---|
1016 | else
|
---|
1017 | {
|
---|
1018 | free_num (result);
|
---|
1019 | *result = temp;
|
---|
1020 | }
|
---|
1021 | free_num (&power);
|
---|
1022 | }
|
---|
1023 |
|
---|
1024 |
|
---|
1025 | /* Take the square root NUM and return it in NUM with SCALE digits
|
---|
1026 | after the decimal place. */
|
---|
1027 |
|
---|
1028 | int
|
---|
1029 | bc_sqrt (num, scale)
|
---|
1030 | bc_num *num;
|
---|
1031 | int scale;
|
---|
1032 | {
|
---|
1033 | int rscale, cmp_res, done;
|
---|
1034 | int cscale;
|
---|
1035 | bc_num guess, guess1, point5;
|
---|
1036 |
|
---|
1037 | /* Initial checks. */
|
---|
1038 | cmp_res = bc_compare (*num, _zero_);
|
---|
1039 | if (cmp_res < 0)
|
---|
1040 | return 0; /* error */
|
---|
1041 | else
|
---|
1042 | {
|
---|
1043 | if (cmp_res == 0)
|
---|
1044 | {
|
---|
1045 | free_num (num);
|
---|
1046 | *num = copy_num (_zero_);
|
---|
1047 | return 1;
|
---|
1048 | }
|
---|
1049 | }
|
---|
1050 | cmp_res = bc_compare (*num, _one_);
|
---|
1051 | if (cmp_res == 0)
|
---|
1052 | {
|
---|
1053 | free_num (num);
|
---|
1054 | *num = copy_num (_one_);
|
---|
1055 | return 1;
|
---|
1056 | }
|
---|
1057 |
|
---|
1058 | /* Initialize the variables. */
|
---|
1059 | rscale = MAX (scale, (*num)->n_scale);
|
---|
1060 | cscale = rscale + 2;
|
---|
1061 | init_num (&guess);
|
---|
1062 | init_num (&guess1);
|
---|
1063 | point5 = new_num (1,1);
|
---|
1064 | point5->n_value[1] = 5;
|
---|
1065 |
|
---|
1066 |
|
---|
1067 | /* Calculate the initial guess. */
|
---|
1068 | if (cmp_res < 0)
|
---|
1069 | /* The number is between 0 and 1. Guess should start at 1. */
|
---|
1070 | guess = copy_num (_one_);
|
---|
1071 | else
|
---|
1072 | {
|
---|
1073 | /* The number is greater than 1. Guess should start at 10^(exp/2). */
|
---|
1074 | int2num (&guess,10);
|
---|
1075 | int2num (&guess1,(*num)->n_len);
|
---|
1076 | bc_multiply (guess1, point5, &guess1, rscale);
|
---|
1077 | guess1->n_scale = 0;
|
---|
1078 | bc_raise (guess, guess1, &guess, rscale);
|
---|
1079 | free_num (&guess1);
|
---|
1080 | }
|
---|
1081 |
|
---|
1082 | /* Find the square root using Newton's algorithm. */
|
---|
1083 | done = FALSE;
|
---|
1084 | while (!done)
|
---|
1085 | {
|
---|
1086 | free_num (&guess1);
|
---|
1087 | guess1 = copy_num (guess);
|
---|
1088 | bc_divide (*num,guess,&guess,cscale);
|
---|
1089 | bc_add (guess,guess1,&guess);
|
---|
1090 | bc_multiply (guess,point5,&guess,cscale);
|
---|
1091 | cmp_res = _do_compare (guess,guess1,FALSE,TRUE);
|
---|
1092 | if (cmp_res == 0) done = TRUE;
|
---|
1093 | }
|
---|
1094 |
|
---|
1095 | /* Assign the number and clean up. */
|
---|
1096 | free_num (num);
|
---|
1097 | bc_divide (guess,_one_,num,rscale);
|
---|
1098 | free_num (&guess);
|
---|
1099 | free_num (&guess1);
|
---|
1100 | free_num (&point5);
|
---|
1101 | return 1;
|
---|
1102 | }
|
---|
1103 |
|
---|
1104 |
|
---|
1105 | /* The following routines provide output for bcd numbers package
|
---|
1106 | using the rules of POSIX bc for output. */
|
---|
1107 |
|
---|
1108 | /* This structure is used for saving digits in the conversion process. */
|
---|
1109 | typedef struct stk_rec {
|
---|
1110 | long digit;
|
---|
1111 | struct stk_rec *next;
|
---|
1112 | } stk_rec;
|
---|
1113 |
|
---|
1114 | /* The reference string for digits. */
|
---|
1115 | char ref_str[] = "0123456789ABCDEF";
|
---|
1116 |
|
---|
1117 |
|
---|
1118 | /* A special output routine for "multi-character digits." Exactly
|
---|
1119 | SIZE characters must be output for the value VAL. If SPACE is
|
---|
1120 | non-zero, we must output one space before the number. OUT_CHAR
|
---|
1121 | is the actual routine for writing the characters. */
|
---|
1122 |
|
---|
1123 | void
|
---|
1124 | out_long (val, size, space, out_char)
|
---|
1125 | long val;
|
---|
1126 | int size, space;
|
---|
1127 | #ifdef __STDC__
|
---|
1128 | void (*out_char)(int);
|
---|
1129 | #else
|
---|
1130 | void (*out_char)();
|
---|
1131 | #endif
|
---|
1132 | {
|
---|
1133 | char digits[40];
|
---|
1134 | int len, ix;
|
---|
1135 |
|
---|
1136 | if (space) (*out_char) (' ');
|
---|
1137 | sprintf (digits, "%ld", val);
|
---|
1138 | len = strlen (digits);
|
---|
1139 | while (size > len)
|
---|
1140 | {
|
---|
1141 | (*out_char) ('0');
|
---|
1142 | size--;
|
---|
1143 | }
|
---|
1144 | for (ix=0; ix < len; ix++)
|
---|
1145 | (*out_char) (digits[ix]);
|
---|
1146 | }
|
---|
1147 |
|
---|
1148 | /* Output of a bcd number. NUM is written in base O_BASE using OUT_CHAR
|
---|
1149 | as the routine to do the actual output of the characters. */
|
---|
1150 |
|
---|
1151 | void
|
---|
1152 | out_num (num, o_base, out_char)
|
---|
1153 | bc_num num;
|
---|
1154 | int o_base;
|
---|
1155 | #ifdef __STDC__
|
---|
1156 | void (*out_char)(int);
|
---|
1157 | #else
|
---|
1158 | void (*out_char)();
|
---|
1159 | #endif
|
---|
1160 | {
|
---|
1161 | char *nptr;
|
---|
1162 | int index, fdigit, pre_space;
|
---|
1163 | stk_rec *digits, *temp;
|
---|
1164 | bc_num int_part, frac_part, base, cur_dig, t_num, max_o_digit;
|
---|
1165 |
|
---|
1166 | /* The negative sign if needed. */
|
---|
1167 | if (num->n_sign == MINUS) (*out_char) ('-');
|
---|
1168 |
|
---|
1169 | /* Output the number. */
|
---|
1170 | if (is_zero (num))
|
---|
1171 | (*out_char) ('0');
|
---|
1172 | else
|
---|
1173 | if (o_base == 10)
|
---|
1174 | {
|
---|
1175 | /* The number is in base 10, do it the fast way. */
|
---|
1176 | nptr = num->n_value;
|
---|
1177 | if (num->n_len > 1 || *nptr != 0)
|
---|
1178 | for (index=num->n_len; index>0; index--)
|
---|
1179 | (*out_char) (BCD_CHAR(*nptr++));
|
---|
1180 | else
|
---|
1181 | nptr++;
|
---|
1182 |
|
---|
1183 | /* Now the fraction. */
|
---|
1184 | if (num->n_scale > 0)
|
---|
1185 | {
|
---|
1186 | (*out_char) ('.');
|
---|
1187 | for (index=0; index<num->n_scale; index++)
|
---|
1188 | (*out_char) (BCD_CHAR(*nptr++));
|
---|
1189 | }
|
---|
1190 | }
|
---|
1191 | else
|
---|
1192 | {
|
---|
1193 | /* The number is some other base. */
|
---|
1194 | digits = NULL;
|
---|
1195 | init_num (&int_part);
|
---|
1196 | bc_divide (num, _one_, &int_part, 0);
|
---|
1197 | init_num (&frac_part);
|
---|
1198 | init_num (&cur_dig);
|
---|
1199 | init_num (&base);
|
---|
1200 | bc_sub (num, int_part, &frac_part);
|
---|
1201 | int2num (&base, o_base);
|
---|
1202 | init_num (&max_o_digit);
|
---|
1203 | int2num (&max_o_digit, o_base-1);
|
---|
1204 |
|
---|
1205 |
|
---|
1206 | /* Get the digits of the integer part and push them on a stack. */
|
---|
1207 | while (!is_zero (int_part))
|
---|
1208 | {
|
---|
1209 | bc_modulo (int_part, base, &cur_dig, 0);
|
---|
1210 | temp = (stk_rec *) malloc (sizeof(stk_rec));
|
---|
1211 | if (temp == NULL) out_of_memory();
|
---|
1212 | temp->digit = num2long (cur_dig);
|
---|
1213 | temp->next = digits;
|
---|
1214 | digits = temp;
|
---|
1215 | bc_divide (int_part, base, &int_part, 0);
|
---|
1216 | }
|
---|
1217 |
|
---|
1218 | /* Print the digits on the stack. */
|
---|
1219 | if (digits != NULL)
|
---|
1220 | {
|
---|
1221 | /* Output the digits. */
|
---|
1222 | while (digits != NULL)
|
---|
1223 | {
|
---|
1224 | temp = digits;
|
---|
1225 | digits = digits->next;
|
---|
1226 | if (o_base <= 16)
|
---|
1227 | (*out_char) (ref_str[ (int) temp->digit]);
|
---|
1228 | else
|
---|
1229 | out_long (temp->digit, max_o_digit->n_len, 1, out_char);
|
---|
1230 | free (temp);
|
---|
1231 | }
|
---|
1232 | }
|
---|
1233 |
|
---|
1234 | /* Get and print the digits of the fraction part. */
|
---|
1235 | if (num->n_scale > 0)
|
---|
1236 | {
|
---|
1237 | (*out_char) ('.');
|
---|
1238 | pre_space = 0;
|
---|
1239 | t_num = copy_num (_one_);
|
---|
1240 | while (t_num->n_len <= num->n_scale) {
|
---|
1241 | bc_multiply (frac_part, base, &frac_part, num->n_scale);
|
---|
1242 | fdigit = num2long (frac_part);
|
---|
1243 | int2num (&int_part, fdigit);
|
---|
1244 | bc_sub (frac_part, int_part, &frac_part);
|
---|
1245 | if (o_base <= 16)
|
---|
1246 | (*out_char) (ref_str[fdigit]);
|
---|
1247 | else {
|
---|
1248 | out_long (fdigit, max_o_digit->n_len, pre_space, out_char);
|
---|
1249 | pre_space = 1;
|
---|
1250 | }
|
---|
1251 | bc_multiply (t_num, base, &t_num, 0);
|
---|
1252 | }
|
---|
1253 | }
|
---|
1254 |
|
---|
1255 | /* Clean up. */
|
---|
1256 | free_num (&int_part);
|
---|
1257 | free_num (&frac_part);
|
---|
1258 | free_num (&base);
|
---|
1259 | free_num (&cur_dig);
|
---|
1260 | }
|
---|
1261 | }
|
---|
1262 |
|
---|
1263 |
|
---|
1264 | #if DEBUG > 0
|
---|
1265 |
|
---|
1266 | /* Debugging procedures. Some are just so one can call them from the
|
---|
1267 | debugger. */
|
---|
1268 |
|
---|
1269 | /* p_n prints the number NUM in base 10. */
|
---|
1270 |
|
---|
1271 | void
|
---|
1272 | p_n (num)
|
---|
1273 | bc_num num;
|
---|
1274 | {
|
---|
1275 | out_num (num, 10, out_char);
|
---|
1276 | return 0;
|
---|
1277 | }
|
---|
1278 |
|
---|
1279 |
|
---|
1280 | /* p_b prints a character array as if it was a string of bcd digits. */
|
---|
1281 | void
|
---|
1282 | p_v (name, num, len)
|
---|
1283 | char *name;
|
---|
1284 | unsigned char *num;
|
---|
1285 | int len;
|
---|
1286 | {
|
---|
1287 | int i;
|
---|
1288 | printf ("%s=", name);
|
---|
1289 | for (i=0; i<len; i++) printf ("%c",BCD_CHAR(num[i]));
|
---|
1290 | printf ("\n");
|
---|
1291 | }
|
---|
1292 |
|
---|
1293 |
|
---|
1294 | /* Convert strings to bc numbers. Base 10 only.*/
|
---|
1295 |
|
---|
1296 | void
|
---|
1297 | str2num (num, str, scale)
|
---|
1298 | bc_num *num;
|
---|
1299 | char *str;
|
---|
1300 | int scale;
|
---|
1301 | {
|
---|
1302 | int digits, strscale;
|
---|
1303 | char *ptr, *nptr;
|
---|
1304 | char zero_int;
|
---|
1305 |
|
---|
1306 | /* Prepare num. */
|
---|
1307 | free_num (num);
|
---|
1308 |
|
---|
1309 | /* Check for valid number and count digits. */
|
---|
1310 | ptr = str;
|
---|
1311 | digits = 0;
|
---|
1312 | strscale = 0;
|
---|
1313 | zero_int = FALSE;
|
---|
1314 | if ( (*ptr == '+') || (*ptr == '-')) ptr++; /* Sign */
|
---|
1315 | while (*ptr == '0') ptr++; /* Skip leading zeros. */
|
---|
1316 | while (isdigit(*ptr)) ptr++, digits++; /* digits */
|
---|
1317 | if (*ptr == '.') ptr++; /* decimal point */
|
---|
1318 | while (isdigit(*ptr)) ptr++, strscale++; /* digits */
|
---|
1319 | if ((*ptr != '\0') || (digits+strscale == 0))
|
---|
1320 | {
|
---|
1321 | *num = copy_num (_zero_);
|
---|
1322 | return;
|
---|
1323 | }
|
---|
1324 |
|
---|
1325 | /* Adjust numbers and allocate storage and initialize fields. */
|
---|
1326 | strscale = MIN(strscale, scale);
|
---|
1327 | if (digits == 0)
|
---|
1328 | {
|
---|
1329 | zero_int = TRUE;
|
---|
1330 | digits = 1;
|
---|
1331 | }
|
---|
1332 | *num = new_num (digits, strscale);
|
---|
1333 |
|
---|
1334 | /* Build the whole number. */
|
---|
1335 | ptr = str;
|
---|
1336 | if (*ptr == '-')
|
---|
1337 | {
|
---|
1338 | (*num)->n_sign = MINUS;
|
---|
1339 | ptr++;
|
---|
1340 | }
|
---|
1341 | else
|
---|
1342 | {
|
---|
1343 | (*num)->n_sign = PLUS;
|
---|
1344 | if (*ptr == '+') ptr++;
|
---|
1345 | }
|
---|
1346 | while (*ptr == '0') ptr++; /* Skip leading zeros. */
|
---|
1347 | nptr = (*num)->n_value;
|
---|
1348 | if (zero_int)
|
---|
1349 | {
|
---|
1350 | *nptr++ = 0;
|
---|
1351 | digits = 0;
|
---|
1352 | }
|
---|
1353 | for (;digits > 0; digits--)
|
---|
1354 | *nptr++ = CH_VAL(*ptr++);
|
---|
1355 |
|
---|
1356 |
|
---|
1357 | /* Build the fractional part. */
|
---|
1358 | if (strscale > 0)
|
---|
1359 | {
|
---|
1360 | ptr++; /* skip the decimal point! */
|
---|
1361 | for (;strscale > 0; strscale--)
|
---|
1362 | *nptr++ = CH_VAL(*ptr++);
|
---|
1363 | }
|
---|
1364 | }
|
---|
1365 |
|
---|
1366 | /* Convert a numbers to a string. Base 10 only.*/
|
---|
1367 |
|
---|
1368 | char
|
---|
1369 | *num2str (num)
|
---|
1370 | bc_num num;
|
---|
1371 | {
|
---|
1372 | char *str, *sptr;
|
---|
1373 | char *nptr;
|
---|
1374 | int index, signch;
|
---|
1375 |
|
---|
1376 | /* Allocate the string memory. */
|
---|
1377 | signch = ( num->n_sign == PLUS ? 0 : 1 ); /* Number of sign chars. */
|
---|
1378 | if (num->n_scale > 0)
|
---|
1379 | str = (char *) malloc (num->n_len + num->n_scale + 2 + signch);
|
---|
1380 | else
|
---|
1381 | str = (char *) malloc (num->n_len + 1 + signch);
|
---|
1382 | if (str == NULL) out_of_memory();
|
---|
1383 |
|
---|
1384 | /* The negative sign if needed. */
|
---|
1385 | sptr = str;
|
---|
1386 | if (signch) *sptr++ = '-';
|
---|
1387 |
|
---|
1388 | /* Load the whole number. */
|
---|
1389 | nptr = num->n_value;
|
---|
1390 | for (index=num->n_len; index>0; index--)
|
---|
1391 | *sptr++ = BCD_CHAR(*nptr++);
|
---|
1392 |
|
---|
1393 | /* Now the fraction. */
|
---|
1394 | if (num->n_scale > 0)
|
---|
1395 | {
|
---|
1396 | *sptr++ = '.';
|
---|
1397 | for (index=0; index<num->n_scale; index++)
|
---|
1398 | *sptr++ = BCD_CHAR(*nptr++);
|
---|
1399 | }
|
---|
1400 |
|
---|
1401 | /* Terminate the string and return it! */
|
---|
1402 | *sptr = '\0';
|
---|
1403 | return (str);
|
---|
1404 | }
|
---|
1405 | #endif
|
---|