1 |
|
---|
2 | /*-------------------------------------------------------------*/
|
---|
3 | /*--- Block sorting machinery ---*/
|
---|
4 | /*--- blocksort.c ---*/
|
---|
5 | /*-------------------------------------------------------------*/
|
---|
6 |
|
---|
7 | /*--
|
---|
8 | This file is a part of bzip2 and/or libbzip2, a program and
|
---|
9 | library for lossless, block-sorting data compression.
|
---|
10 |
|
---|
11 | Copyright (C) 1996-2005 Julian R Seward. All rights reserved.
|
---|
12 |
|
---|
13 | Redistribution and use in source and binary forms, with or without
|
---|
14 | modification, are permitted provided that the following conditions
|
---|
15 | are met:
|
---|
16 |
|
---|
17 | 1. Redistributions of source code must retain the above copyright
|
---|
18 | notice, this list of conditions and the following disclaimer.
|
---|
19 |
|
---|
20 | 2. The origin of this software must not be misrepresented; you must
|
---|
21 | not claim that you wrote the original software. If you use this
|
---|
22 | software in a product, an acknowledgment in the product
|
---|
23 | documentation would be appreciated but is not required.
|
---|
24 |
|
---|
25 | 3. Altered source versions must be plainly marked as such, and must
|
---|
26 | not be misrepresented as being the original software.
|
---|
27 |
|
---|
28 | 4. The name of the author may not be used to endorse or promote
|
---|
29 | products derived from this software without specific prior written
|
---|
30 | permission.
|
---|
31 |
|
---|
32 | THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
|
---|
33 | OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
---|
34 | WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
---|
35 | ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
---|
36 | DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
---|
37 | DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
---|
38 | GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
---|
39 | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
---|
40 | WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
---|
41 | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
---|
42 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
43 |
|
---|
44 | Julian Seward, Cambridge, UK.
|
---|
45 | jseward@bzip.org
|
---|
46 | bzip2/libbzip2 version 1.0 of 21 March 2000
|
---|
47 |
|
---|
48 | This program is based on (at least) the work of:
|
---|
49 | Mike Burrows
|
---|
50 | David Wheeler
|
---|
51 | Peter Fenwick
|
---|
52 | Alistair Moffat
|
---|
53 | Radford Neal
|
---|
54 | Ian H. Witten
|
---|
55 | Robert Sedgewick
|
---|
56 | Jon L. Bentley
|
---|
57 |
|
---|
58 | For more information on these sources, see the manual.
|
---|
59 |
|
---|
60 | To get some idea how the block sorting algorithms in this file
|
---|
61 | work, read my paper
|
---|
62 | On the Performance of BWT Sorting Algorithms
|
---|
63 | in Proceedings of the IEEE Data Compression Conference 2000,
|
---|
64 | Snowbird, Utah, USA, 27-30 March 2000. The main sort in this
|
---|
65 | file implements the algorithm called cache in the paper.
|
---|
66 | --*/
|
---|
67 |
|
---|
68 |
|
---|
69 | #include "bzlib_private.h"
|
---|
70 |
|
---|
71 | /*---------------------------------------------*/
|
---|
72 | /*--- Fallback O(N log(N)^2) sorting ---*/
|
---|
73 | /*--- algorithm, for repetitive blocks ---*/
|
---|
74 | /*---------------------------------------------*/
|
---|
75 |
|
---|
76 | /*---------------------------------------------*/
|
---|
77 | static
|
---|
78 | __inline__
|
---|
79 | void fallbackSimpleSort ( UInt32* fmap,
|
---|
80 | UInt32* eclass,
|
---|
81 | Int32 lo,
|
---|
82 | Int32 hi )
|
---|
83 | {
|
---|
84 | Int32 i, j, tmp;
|
---|
85 | UInt32 ec_tmp;
|
---|
86 |
|
---|
87 | if (lo == hi) return;
|
---|
88 |
|
---|
89 | if (hi - lo > 3) {
|
---|
90 | for ( i = hi-4; i >= lo; i-- ) {
|
---|
91 | tmp = fmap[i];
|
---|
92 | ec_tmp = eclass[tmp];
|
---|
93 | for ( j = i+4; j <= hi && ec_tmp > eclass[fmap[j]]; j += 4 )
|
---|
94 | fmap[j-4] = fmap[j];
|
---|
95 | fmap[j-4] = tmp;
|
---|
96 | }
|
---|
97 | }
|
---|
98 |
|
---|
99 | for ( i = hi-1; i >= lo; i-- ) {
|
---|
100 | tmp = fmap[i];
|
---|
101 | ec_tmp = eclass[tmp];
|
---|
102 | for ( j = i+1; j <= hi && ec_tmp > eclass[fmap[j]]; j++ )
|
---|
103 | fmap[j-1] = fmap[j];
|
---|
104 | fmap[j-1] = tmp;
|
---|
105 | }
|
---|
106 | }
|
---|
107 |
|
---|
108 |
|
---|
109 | /*---------------------------------------------*/
|
---|
110 | #define fswap(zz1, zz2) \
|
---|
111 | { Int32 zztmp = zz1; zz1 = zz2; zz2 = zztmp; }
|
---|
112 |
|
---|
113 | #define fvswap(zzp1, zzp2, zzn) \
|
---|
114 | { \
|
---|
115 | Int32 yyp1 = (zzp1); \
|
---|
116 | Int32 yyp2 = (zzp2); \
|
---|
117 | Int32 yyn = (zzn); \
|
---|
118 | while (yyn > 0) { \
|
---|
119 | fswap(fmap[yyp1], fmap[yyp2]); \
|
---|
120 | yyp1++; yyp2++; yyn--; \
|
---|
121 | } \
|
---|
122 | }
|
---|
123 |
|
---|
124 |
|
---|
125 | #define fmin(a,b) ((a) < (b)) ? (a) : (b)
|
---|
126 |
|
---|
127 | #define fpush(lz,hz) { stackLo[sp] = lz; \
|
---|
128 | stackHi[sp] = hz; \
|
---|
129 | sp++; }
|
---|
130 |
|
---|
131 | #define fpop(lz,hz) { sp--; \
|
---|
132 | lz = stackLo[sp]; \
|
---|
133 | hz = stackHi[sp]; }
|
---|
134 |
|
---|
135 | #define FALLBACK_QSORT_SMALL_THRESH 10
|
---|
136 | #define FALLBACK_QSORT_STACK_SIZE 100
|
---|
137 |
|
---|
138 |
|
---|
139 | static
|
---|
140 | void fallbackQSort3 ( UInt32* fmap,
|
---|
141 | UInt32* eclass,
|
---|
142 | Int32 loSt,
|
---|
143 | Int32 hiSt )
|
---|
144 | {
|
---|
145 | Int32 unLo, unHi, ltLo, gtHi, n, m;
|
---|
146 | Int32 sp, lo, hi;
|
---|
147 | UInt32 med, r, r3;
|
---|
148 | Int32 stackLo[FALLBACK_QSORT_STACK_SIZE];
|
---|
149 | Int32 stackHi[FALLBACK_QSORT_STACK_SIZE];
|
---|
150 |
|
---|
151 | r = 0;
|
---|
152 |
|
---|
153 | sp = 0;
|
---|
154 | fpush ( loSt, hiSt );
|
---|
155 |
|
---|
156 | while (sp > 0) {
|
---|
157 |
|
---|
158 | AssertH ( sp < FALLBACK_QSORT_STACK_SIZE, 1004 );
|
---|
159 |
|
---|
160 | fpop ( lo, hi );
|
---|
161 | if (hi - lo < FALLBACK_QSORT_SMALL_THRESH) {
|
---|
162 | fallbackSimpleSort ( fmap, eclass, lo, hi );
|
---|
163 | continue;
|
---|
164 | }
|
---|
165 |
|
---|
166 | /* Random partitioning. Median of 3 sometimes fails to
|
---|
167 | avoid bad cases. Median of 9 seems to help but
|
---|
168 | looks rather expensive. This too seems to work but
|
---|
169 | is cheaper. Guidance for the magic constants
|
---|
170 | 7621 and 32768 is taken from Sedgewick's algorithms
|
---|
171 | book, chapter 35.
|
---|
172 | */
|
---|
173 | r = ((r * 7621) + 1) % 32768;
|
---|
174 | r3 = r % 3;
|
---|
175 | if (r3 == 0) med = eclass[fmap[lo]]; else
|
---|
176 | if (r3 == 1) med = eclass[fmap[(lo+hi)>>1]]; else
|
---|
177 | med = eclass[fmap[hi]];
|
---|
178 |
|
---|
179 | unLo = ltLo = lo;
|
---|
180 | unHi = gtHi = hi;
|
---|
181 |
|
---|
182 | while (1) {
|
---|
183 | while (1) {
|
---|
184 | if (unLo > unHi) break;
|
---|
185 | n = (Int32)eclass[fmap[unLo]] - (Int32)med;
|
---|
186 | if (n == 0) {
|
---|
187 | fswap(fmap[unLo], fmap[ltLo]);
|
---|
188 | ltLo++; unLo++;
|
---|
189 | continue;
|
---|
190 | };
|
---|
191 | if (n > 0) break;
|
---|
192 | unLo++;
|
---|
193 | }
|
---|
194 | while (1) {
|
---|
195 | if (unLo > unHi) break;
|
---|
196 | n = (Int32)eclass[fmap[unHi]] - (Int32)med;
|
---|
197 | if (n == 0) {
|
---|
198 | fswap(fmap[unHi], fmap[gtHi]);
|
---|
199 | gtHi--; unHi--;
|
---|
200 | continue;
|
---|
201 | };
|
---|
202 | if (n < 0) break;
|
---|
203 | unHi--;
|
---|
204 | }
|
---|
205 | if (unLo > unHi) break;
|
---|
206 | fswap(fmap[unLo], fmap[unHi]); unLo++; unHi--;
|
---|
207 | }
|
---|
208 |
|
---|
209 | AssertD ( unHi == unLo-1, "fallbackQSort3(2)" );
|
---|
210 |
|
---|
211 | if (gtHi < ltLo) continue;
|
---|
212 |
|
---|
213 | n = fmin(ltLo-lo, unLo-ltLo); fvswap(lo, unLo-n, n);
|
---|
214 | m = fmin(hi-gtHi, gtHi-unHi); fvswap(unLo, hi-m+1, m);
|
---|
215 |
|
---|
216 | n = lo + unLo - ltLo - 1;
|
---|
217 | m = hi - (gtHi - unHi) + 1;
|
---|
218 |
|
---|
219 | if (n - lo > hi - m) {
|
---|
220 | fpush ( lo, n );
|
---|
221 | fpush ( m, hi );
|
---|
222 | } else {
|
---|
223 | fpush ( m, hi );
|
---|
224 | fpush ( lo, n );
|
---|
225 | }
|
---|
226 | }
|
---|
227 | }
|
---|
228 |
|
---|
229 | #undef fmin
|
---|
230 | #undef fpush
|
---|
231 | #undef fpop
|
---|
232 | #undef fswap
|
---|
233 | #undef fvswap
|
---|
234 | #undef FALLBACK_QSORT_SMALL_THRESH
|
---|
235 | #undef FALLBACK_QSORT_STACK_SIZE
|
---|
236 |
|
---|
237 |
|
---|
238 | /*---------------------------------------------*/
|
---|
239 | /* Pre:
|
---|
240 | nblock > 0
|
---|
241 | eclass exists for [0 .. nblock-1]
|
---|
242 | ((UChar*)eclass) [0 .. nblock-1] holds block
|
---|
243 | ptr exists for [0 .. nblock-1]
|
---|
244 |
|
---|
245 | Post:
|
---|
246 | ((UChar*)eclass) [0 .. nblock-1] holds block
|
---|
247 | All other areas of eclass destroyed
|
---|
248 | fmap [0 .. nblock-1] holds sorted order
|
---|
249 | bhtab [ 0 .. 2+(nblock/32) ] destroyed
|
---|
250 | */
|
---|
251 |
|
---|
252 | #define SET_BH(zz) bhtab[(zz) >> 5] |= (1 << ((zz) & 31))
|
---|
253 | #define CLEAR_BH(zz) bhtab[(zz) >> 5] &= ~(1 << ((zz) & 31))
|
---|
254 | #define ISSET_BH(zz) (bhtab[(zz) >> 5] & (1 << ((zz) & 31)))
|
---|
255 | #define WORD_BH(zz) bhtab[(zz) >> 5]
|
---|
256 | #define UNALIGNED_BH(zz) ((zz) & 0x01f)
|
---|
257 |
|
---|
258 | static
|
---|
259 | void fallbackSort ( UInt32* fmap,
|
---|
260 | UInt32* eclass,
|
---|
261 | UInt32* bhtab,
|
---|
262 | Int32 nblock,
|
---|
263 | Int32 verb )
|
---|
264 | {
|
---|
265 | Int32 ftab[257];
|
---|
266 | Int32 ftabCopy[256];
|
---|
267 | Int32 H, i, j, k, l, r, cc, cc1;
|
---|
268 | Int32 nNotDone;
|
---|
269 | Int32 nBhtab;
|
---|
270 | UChar* eclass8 = (UChar*)eclass;
|
---|
271 |
|
---|
272 | /*--
|
---|
273 | Initial 1-char radix sort to generate
|
---|
274 | initial fmap and initial BH bits.
|
---|
275 | --*/
|
---|
276 | if (verb >= 4)
|
---|
277 | VPrintf0 ( " bucket sorting ...\n" );
|
---|
278 | for (i = 0; i < 257; i++) ftab[i] = 0;
|
---|
279 | for (i = 0; i < nblock; i++) ftab[eclass8[i]]++;
|
---|
280 | for (i = 0; i < 256; i++) ftabCopy[i] = ftab[i];
|
---|
281 | for (i = 1; i < 257; i++) ftab[i] += ftab[i-1];
|
---|
282 |
|
---|
283 | for (i = 0; i < nblock; i++) {
|
---|
284 | j = eclass8[i];
|
---|
285 | k = ftab[j] - 1;
|
---|
286 | ftab[j] = k;
|
---|
287 | fmap[k] = i;
|
---|
288 | }
|
---|
289 |
|
---|
290 | nBhtab = 2 + (nblock / 32);
|
---|
291 | for (i = 0; i < nBhtab; i++) bhtab[i] = 0;
|
---|
292 | for (i = 0; i < 256; i++) SET_BH(ftab[i]);
|
---|
293 |
|
---|
294 | /*--
|
---|
295 | Inductively refine the buckets. Kind-of an
|
---|
296 | "exponential radix sort" (!), inspired by the
|
---|
297 | Manber-Myers suffix array construction algorithm.
|
---|
298 | --*/
|
---|
299 |
|
---|
300 | /*-- set sentinel bits for block-end detection --*/
|
---|
301 | for (i = 0; i < 32; i++) {
|
---|
302 | SET_BH(nblock + 2*i);
|
---|
303 | CLEAR_BH(nblock + 2*i + 1);
|
---|
304 | }
|
---|
305 |
|
---|
306 | /*-- the log(N) loop --*/
|
---|
307 | H = 1;
|
---|
308 | while (1) {
|
---|
309 |
|
---|
310 | if (verb >= 4)
|
---|
311 | VPrintf1 ( " depth %6d has ", H );
|
---|
312 |
|
---|
313 | j = 0;
|
---|
314 | for (i = 0; i < nblock; i++) {
|
---|
315 | if (ISSET_BH(i)) j = i;
|
---|
316 | k = fmap[i] - H; if (k < 0) k += nblock;
|
---|
317 | eclass[k] = j;
|
---|
318 | }
|
---|
319 |
|
---|
320 | nNotDone = 0;
|
---|
321 | r = -1;
|
---|
322 | while (1) {
|
---|
323 |
|
---|
324 | /*-- find the next non-singleton bucket --*/
|
---|
325 | k = r + 1;
|
---|
326 | while (ISSET_BH(k) && UNALIGNED_BH(k)) k++;
|
---|
327 | if (ISSET_BH(k)) {
|
---|
328 | while (WORD_BH(k) == 0xffffffff) k += 32;
|
---|
329 | while (ISSET_BH(k)) k++;
|
---|
330 | }
|
---|
331 | l = k - 1;
|
---|
332 | if (l >= nblock) break;
|
---|
333 | while (!ISSET_BH(k) && UNALIGNED_BH(k)) k++;
|
---|
334 | if (!ISSET_BH(k)) {
|
---|
335 | while (WORD_BH(k) == 0x00000000) k += 32;
|
---|
336 | while (!ISSET_BH(k)) k++;
|
---|
337 | }
|
---|
338 | r = k - 1;
|
---|
339 | if (r >= nblock) break;
|
---|
340 |
|
---|
341 | /*-- now [l, r] bracket current bucket --*/
|
---|
342 | if (r > l) {
|
---|
343 | nNotDone += (r - l + 1);
|
---|
344 | fallbackQSort3 ( fmap, eclass, l, r );
|
---|
345 |
|
---|
346 | /*-- scan bucket and generate header bits-- */
|
---|
347 | cc = -1;
|
---|
348 | for (i = l; i <= r; i++) {
|
---|
349 | cc1 = eclass[fmap[i]];
|
---|
350 | if (cc != cc1) { SET_BH(i); cc = cc1; };
|
---|
351 | }
|
---|
352 | }
|
---|
353 | }
|
---|
354 |
|
---|
355 | if (verb >= 4)
|
---|
356 | VPrintf1 ( "%6d unresolved strings\n", nNotDone );
|
---|
357 |
|
---|
358 | H *= 2;
|
---|
359 | if (H > nblock || nNotDone == 0) break;
|
---|
360 | }
|
---|
361 |
|
---|
362 | /*--
|
---|
363 | Reconstruct the original block in
|
---|
364 | eclass8 [0 .. nblock-1], since the
|
---|
365 | previous phase destroyed it.
|
---|
366 | --*/
|
---|
367 | if (verb >= 4)
|
---|
368 | VPrintf0 ( " reconstructing block ...\n" );
|
---|
369 | j = 0;
|
---|
370 | for (i = 0; i < nblock; i++) {
|
---|
371 | while (ftabCopy[j] == 0) j++;
|
---|
372 | ftabCopy[j]--;
|
---|
373 | eclass8[fmap[i]] = (UChar)j;
|
---|
374 | }
|
---|
375 | AssertH ( j < 256, 1005 );
|
---|
376 | }
|
---|
377 |
|
---|
378 | #undef SET_BH
|
---|
379 | #undef CLEAR_BH
|
---|
380 | #undef ISSET_BH
|
---|
381 | #undef WORD_BH
|
---|
382 | #undef UNALIGNED_BH
|
---|
383 |
|
---|
384 |
|
---|
385 | /*---------------------------------------------*/
|
---|
386 | /*--- The main, O(N^2 log(N)) sorting ---*/
|
---|
387 | /*--- algorithm. Faster for "normal" ---*/
|
---|
388 | /*--- non-repetitive blocks. ---*/
|
---|
389 | /*---------------------------------------------*/
|
---|
390 |
|
---|
391 | /*---------------------------------------------*/
|
---|
392 | static
|
---|
393 | __inline__
|
---|
394 | Bool mainGtU ( UInt32 i1,
|
---|
395 | UInt32 i2,
|
---|
396 | UChar* block,
|
---|
397 | UInt16* quadrant,
|
---|
398 | UInt32 nblock,
|
---|
399 | Int32* budget )
|
---|
400 | {
|
---|
401 | Int32 k;
|
---|
402 | UChar c1, c2;
|
---|
403 | UInt16 s1, s2;
|
---|
404 |
|
---|
405 | AssertD ( i1 != i2, "mainGtU" );
|
---|
406 | /* 1 */
|
---|
407 | c1 = block[i1]; c2 = block[i2];
|
---|
408 | if (c1 != c2) return (c1 > c2);
|
---|
409 | i1++; i2++;
|
---|
410 | /* 2 */
|
---|
411 | c1 = block[i1]; c2 = block[i2];
|
---|
412 | if (c1 != c2) return (c1 > c2);
|
---|
413 | i1++; i2++;
|
---|
414 | /* 3 */
|
---|
415 | c1 = block[i1]; c2 = block[i2];
|
---|
416 | if (c1 != c2) return (c1 > c2);
|
---|
417 | i1++; i2++;
|
---|
418 | /* 4 */
|
---|
419 | c1 = block[i1]; c2 = block[i2];
|
---|
420 | if (c1 != c2) return (c1 > c2);
|
---|
421 | i1++; i2++;
|
---|
422 | /* 5 */
|
---|
423 | c1 = block[i1]; c2 = block[i2];
|
---|
424 | if (c1 != c2) return (c1 > c2);
|
---|
425 | i1++; i2++;
|
---|
426 | /* 6 */
|
---|
427 | c1 = block[i1]; c2 = block[i2];
|
---|
428 | if (c1 != c2) return (c1 > c2);
|
---|
429 | i1++; i2++;
|
---|
430 | /* 7 */
|
---|
431 | c1 = block[i1]; c2 = block[i2];
|
---|
432 | if (c1 != c2) return (c1 > c2);
|
---|
433 | i1++; i2++;
|
---|
434 | /* 8 */
|
---|
435 | c1 = block[i1]; c2 = block[i2];
|
---|
436 | if (c1 != c2) return (c1 > c2);
|
---|
437 | i1++; i2++;
|
---|
438 | /* 9 */
|
---|
439 | c1 = block[i1]; c2 = block[i2];
|
---|
440 | if (c1 != c2) return (c1 > c2);
|
---|
441 | i1++; i2++;
|
---|
442 | /* 10 */
|
---|
443 | c1 = block[i1]; c2 = block[i2];
|
---|
444 | if (c1 != c2) return (c1 > c2);
|
---|
445 | i1++; i2++;
|
---|
446 | /* 11 */
|
---|
447 | c1 = block[i1]; c2 = block[i2];
|
---|
448 | if (c1 != c2) return (c1 > c2);
|
---|
449 | i1++; i2++;
|
---|
450 | /* 12 */
|
---|
451 | c1 = block[i1]; c2 = block[i2];
|
---|
452 | if (c1 != c2) return (c1 > c2);
|
---|
453 | i1++; i2++;
|
---|
454 |
|
---|
455 | k = nblock + 8;
|
---|
456 |
|
---|
457 | do {
|
---|
458 | /* 1 */
|
---|
459 | c1 = block[i1]; c2 = block[i2];
|
---|
460 | if (c1 != c2) return (c1 > c2);
|
---|
461 | s1 = quadrant[i1]; s2 = quadrant[i2];
|
---|
462 | if (s1 != s2) return (s1 > s2);
|
---|
463 | i1++; i2++;
|
---|
464 | /* 2 */
|
---|
465 | c1 = block[i1]; c2 = block[i2];
|
---|
466 | if (c1 != c2) return (c1 > c2);
|
---|
467 | s1 = quadrant[i1]; s2 = quadrant[i2];
|
---|
468 | if (s1 != s2) return (s1 > s2);
|
---|
469 | i1++; i2++;
|
---|
470 | /* 3 */
|
---|
471 | c1 = block[i1]; c2 = block[i2];
|
---|
472 | if (c1 != c2) return (c1 > c2);
|
---|
473 | s1 = quadrant[i1]; s2 = quadrant[i2];
|
---|
474 | if (s1 != s2) return (s1 > s2);
|
---|
475 | i1++; i2++;
|
---|
476 | /* 4 */
|
---|
477 | c1 = block[i1]; c2 = block[i2];
|
---|
478 | if (c1 != c2) return (c1 > c2);
|
---|
479 | s1 = quadrant[i1]; s2 = quadrant[i2];
|
---|
480 | if (s1 != s2) return (s1 > s2);
|
---|
481 | i1++; i2++;
|
---|
482 | /* 5 */
|
---|
483 | c1 = block[i1]; c2 = block[i2];
|
---|
484 | if (c1 != c2) return (c1 > c2);
|
---|
485 | s1 = quadrant[i1]; s2 = quadrant[i2];
|
---|
486 | if (s1 != s2) return (s1 > s2);
|
---|
487 | i1++; i2++;
|
---|
488 | /* 6 */
|
---|
489 | c1 = block[i1]; c2 = block[i2];
|
---|
490 | if (c1 != c2) return (c1 > c2);
|
---|
491 | s1 = quadrant[i1]; s2 = quadrant[i2];
|
---|
492 | if (s1 != s2) return (s1 > s2);
|
---|
493 | i1++; i2++;
|
---|
494 | /* 7 */
|
---|
495 | c1 = block[i1]; c2 = block[i2];
|
---|
496 | if (c1 != c2) return (c1 > c2);
|
---|
497 | s1 = quadrant[i1]; s2 = quadrant[i2];
|
---|
498 | if (s1 != s2) return (s1 > s2);
|
---|
499 | i1++; i2++;
|
---|
500 | /* 8 */
|
---|
501 | c1 = block[i1]; c2 = block[i2];
|
---|
502 | if (c1 != c2) return (c1 > c2);
|
---|
503 | s1 = quadrant[i1]; s2 = quadrant[i2];
|
---|
504 | if (s1 != s2) return (s1 > s2);
|
---|
505 | i1++; i2++;
|
---|
506 |
|
---|
507 | if (i1 >= nblock) i1 -= nblock;
|
---|
508 | if (i2 >= nblock) i2 -= nblock;
|
---|
509 |
|
---|
510 | k -= 8;
|
---|
511 | (*budget)--;
|
---|
512 | }
|
---|
513 | while (k >= 0);
|
---|
514 |
|
---|
515 | return False;
|
---|
516 | }
|
---|
517 |
|
---|
518 |
|
---|
519 | /*---------------------------------------------*/
|
---|
520 | /*--
|
---|
521 | Knuth's increments seem to work better
|
---|
522 | than Incerpi-Sedgewick here. Possibly
|
---|
523 | because the number of elems to sort is
|
---|
524 | usually small, typically <= 20.
|
---|
525 | --*/
|
---|
526 | static
|
---|
527 | Int32 incs[14] = { 1, 4, 13, 40, 121, 364, 1093, 3280,
|
---|
528 | 9841, 29524, 88573, 265720,
|
---|
529 | 797161, 2391484 };
|
---|
530 |
|
---|
531 | static
|
---|
532 | void mainSimpleSort ( UInt32* ptr,
|
---|
533 | UChar* block,
|
---|
534 | UInt16* quadrant,
|
---|
535 | Int32 nblock,
|
---|
536 | Int32 lo,
|
---|
537 | Int32 hi,
|
---|
538 | Int32 d,
|
---|
539 | Int32* budget )
|
---|
540 | {
|
---|
541 | Int32 i, j, h, bigN, hp;
|
---|
542 | UInt32 v;
|
---|
543 |
|
---|
544 | bigN = hi - lo + 1;
|
---|
545 | if (bigN < 2) return;
|
---|
546 |
|
---|
547 | hp = 0;
|
---|
548 | while (incs[hp] < bigN) hp++;
|
---|
549 | hp--;
|
---|
550 |
|
---|
551 | for (; hp >= 0; hp--) {
|
---|
552 | h = incs[hp];
|
---|
553 |
|
---|
554 | i = lo + h;
|
---|
555 | while (True) {
|
---|
556 |
|
---|
557 | /*-- copy 1 --*/
|
---|
558 | if (i > hi) break;
|
---|
559 | v = ptr[i];
|
---|
560 | j = i;
|
---|
561 | while ( mainGtU (
|
---|
562 | ptr[j-h]+d, v+d, block, quadrant, nblock, budget
|
---|
563 | ) ) {
|
---|
564 | ptr[j] = ptr[j-h];
|
---|
565 | j = j - h;
|
---|
566 | if (j <= (lo + h - 1)) break;
|
---|
567 | }
|
---|
568 | ptr[j] = v;
|
---|
569 | i++;
|
---|
570 |
|
---|
571 | /*-- copy 2 --*/
|
---|
572 | if (i > hi) break;
|
---|
573 | v = ptr[i];
|
---|
574 | j = i;
|
---|
575 | while ( mainGtU (
|
---|
576 | ptr[j-h]+d, v+d, block, quadrant, nblock, budget
|
---|
577 | ) ) {
|
---|
578 | ptr[j] = ptr[j-h];
|
---|
579 | j = j - h;
|
---|
580 | if (j <= (lo + h - 1)) break;
|
---|
581 | }
|
---|
582 | ptr[j] = v;
|
---|
583 | i++;
|
---|
584 |
|
---|
585 | /*-- copy 3 --*/
|
---|
586 | if (i > hi) break;
|
---|
587 | v = ptr[i];
|
---|
588 | j = i;
|
---|
589 | while ( mainGtU (
|
---|
590 | ptr[j-h]+d, v+d, block, quadrant, nblock, budget
|
---|
591 | ) ) {
|
---|
592 | ptr[j] = ptr[j-h];
|
---|
593 | j = j - h;
|
---|
594 | if (j <= (lo + h - 1)) break;
|
---|
595 | }
|
---|
596 | ptr[j] = v;
|
---|
597 | i++;
|
---|
598 |
|
---|
599 | if (*budget < 0) return;
|
---|
600 | }
|
---|
601 | }
|
---|
602 | }
|
---|
603 |
|
---|
604 |
|
---|
605 | /*---------------------------------------------*/
|
---|
606 | /*--
|
---|
607 | The following is an implementation of
|
---|
608 | an elegant 3-way quicksort for strings,
|
---|
609 | described in a paper "Fast Algorithms for
|
---|
610 | Sorting and Searching Strings", by Robert
|
---|
611 | Sedgewick and Jon L. Bentley.
|
---|
612 | --*/
|
---|
613 |
|
---|
614 | #define mswap(zz1, zz2) \
|
---|
615 | { Int32 zztmp = zz1; zz1 = zz2; zz2 = zztmp; }
|
---|
616 |
|
---|
617 | #define mvswap(zzp1, zzp2, zzn) \
|
---|
618 | { \
|
---|
619 | Int32 yyp1 = (zzp1); \
|
---|
620 | Int32 yyp2 = (zzp2); \
|
---|
621 | Int32 yyn = (zzn); \
|
---|
622 | while (yyn > 0) { \
|
---|
623 | mswap(ptr[yyp1], ptr[yyp2]); \
|
---|
624 | yyp1++; yyp2++; yyn--; \
|
---|
625 | } \
|
---|
626 | }
|
---|
627 |
|
---|
628 | static
|
---|
629 | __inline__
|
---|
630 | UChar mmed3 ( UChar a, UChar b, UChar c )
|
---|
631 | {
|
---|
632 | UChar t;
|
---|
633 | if (a > b) { t = a; a = b; b = t; };
|
---|
634 | if (b > c) {
|
---|
635 | b = c;
|
---|
636 | if (a > b) b = a;
|
---|
637 | }
|
---|
638 | return b;
|
---|
639 | }
|
---|
640 |
|
---|
641 | #define mmin(a,b) ((a) < (b)) ? (a) : (b)
|
---|
642 |
|
---|
643 | #define mpush(lz,hz,dz) { stackLo[sp] = lz; \
|
---|
644 | stackHi[sp] = hz; \
|
---|
645 | stackD [sp] = dz; \
|
---|
646 | sp++; }
|
---|
647 |
|
---|
648 | #define mpop(lz,hz,dz) { sp--; \
|
---|
649 | lz = stackLo[sp]; \
|
---|
650 | hz = stackHi[sp]; \
|
---|
651 | dz = stackD [sp]; }
|
---|
652 |
|
---|
653 |
|
---|
654 | #define mnextsize(az) (nextHi[az]-nextLo[az])
|
---|
655 |
|
---|
656 | #define mnextswap(az,bz) \
|
---|
657 | { Int32 tz; \
|
---|
658 | tz = nextLo[az]; nextLo[az] = nextLo[bz]; nextLo[bz] = tz; \
|
---|
659 | tz = nextHi[az]; nextHi[az] = nextHi[bz]; nextHi[bz] = tz; \
|
---|
660 | tz = nextD [az]; nextD [az] = nextD [bz]; nextD [bz] = tz; }
|
---|
661 |
|
---|
662 |
|
---|
663 | #define MAIN_QSORT_SMALL_THRESH 20
|
---|
664 | #define MAIN_QSORT_DEPTH_THRESH (BZ_N_RADIX + BZ_N_QSORT)
|
---|
665 | #define MAIN_QSORT_STACK_SIZE 100
|
---|
666 |
|
---|
667 | static
|
---|
668 | void mainQSort3 ( UInt32* ptr,
|
---|
669 | UChar* block,
|
---|
670 | UInt16* quadrant,
|
---|
671 | Int32 nblock,
|
---|
672 | Int32 loSt,
|
---|
673 | Int32 hiSt,
|
---|
674 | Int32 dSt,
|
---|
675 | Int32* budget )
|
---|
676 | {
|
---|
677 | Int32 unLo, unHi, ltLo, gtHi, n, m, med;
|
---|
678 | Int32 sp, lo, hi, d;
|
---|
679 |
|
---|
680 | Int32 stackLo[MAIN_QSORT_STACK_SIZE];
|
---|
681 | Int32 stackHi[MAIN_QSORT_STACK_SIZE];
|
---|
682 | Int32 stackD [MAIN_QSORT_STACK_SIZE];
|
---|
683 |
|
---|
684 | Int32 nextLo[3];
|
---|
685 | Int32 nextHi[3];
|
---|
686 | Int32 nextD [3];
|
---|
687 |
|
---|
688 | sp = 0;
|
---|
689 | mpush ( loSt, hiSt, dSt );
|
---|
690 |
|
---|
691 | while (sp > 0) {
|
---|
692 |
|
---|
693 | AssertH ( sp < MAIN_QSORT_STACK_SIZE, 1001 );
|
---|
694 |
|
---|
695 | mpop ( lo, hi, d );
|
---|
696 | if (hi - lo < MAIN_QSORT_SMALL_THRESH ||
|
---|
697 | d > MAIN_QSORT_DEPTH_THRESH) {
|
---|
698 | mainSimpleSort ( ptr, block, quadrant, nblock, lo, hi, d, budget );
|
---|
699 | if (*budget < 0) return;
|
---|
700 | continue;
|
---|
701 | }
|
---|
702 |
|
---|
703 | med = (Int32)
|
---|
704 | mmed3 ( block[ptr[ lo ]+d],
|
---|
705 | block[ptr[ hi ]+d],
|
---|
706 | block[ptr[ (lo+hi)>>1 ]+d] );
|
---|
707 |
|
---|
708 | unLo = ltLo = lo;
|
---|
709 | unHi = gtHi = hi;
|
---|
710 |
|
---|
711 | while (True) {
|
---|
712 | while (True) {
|
---|
713 | if (unLo > unHi) break;
|
---|
714 | n = ((Int32)block[ptr[unLo]+d]) - med;
|
---|
715 | if (n == 0) {
|
---|
716 | mswap(ptr[unLo], ptr[ltLo]);
|
---|
717 | ltLo++; unLo++; continue;
|
---|
718 | };
|
---|
719 | if (n > 0) break;
|
---|
720 | unLo++;
|
---|
721 | }
|
---|
722 | while (True) {
|
---|
723 | if (unLo > unHi) break;
|
---|
724 | n = ((Int32)block[ptr[unHi]+d]) - med;
|
---|
725 | if (n == 0) {
|
---|
726 | mswap(ptr[unHi], ptr[gtHi]);
|
---|
727 | gtHi--; unHi--; continue;
|
---|
728 | };
|
---|
729 | if (n < 0) break;
|
---|
730 | unHi--;
|
---|
731 | }
|
---|
732 | if (unLo > unHi) break;
|
---|
733 | mswap(ptr[unLo], ptr[unHi]); unLo++; unHi--;
|
---|
734 | }
|
---|
735 |
|
---|
736 | AssertD ( unHi == unLo-1, "mainQSort3(2)" );
|
---|
737 |
|
---|
738 | if (gtHi < ltLo) {
|
---|
739 | mpush(lo, hi, d+1 );
|
---|
740 | continue;
|
---|
741 | }
|
---|
742 |
|
---|
743 | n = mmin(ltLo-lo, unLo-ltLo); mvswap(lo, unLo-n, n);
|
---|
744 | m = mmin(hi-gtHi, gtHi-unHi); mvswap(unLo, hi-m+1, m);
|
---|
745 |
|
---|
746 | n = lo + unLo - ltLo - 1;
|
---|
747 | m = hi - (gtHi - unHi) + 1;
|
---|
748 |
|
---|
749 | nextLo[0] = lo; nextHi[0] = n; nextD[0] = d;
|
---|
750 | nextLo[1] = m; nextHi[1] = hi; nextD[1] = d;
|
---|
751 | nextLo[2] = n+1; nextHi[2] = m-1; nextD[2] = d+1;
|
---|
752 |
|
---|
753 | if (mnextsize(0) < mnextsize(1)) mnextswap(0,1);
|
---|
754 | if (mnextsize(1) < mnextsize(2)) mnextswap(1,2);
|
---|
755 | if (mnextsize(0) < mnextsize(1)) mnextswap(0,1);
|
---|
756 |
|
---|
757 | AssertD (mnextsize(0) >= mnextsize(1), "mainQSort3(8)" );
|
---|
758 | AssertD (mnextsize(1) >= mnextsize(2), "mainQSort3(9)" );
|
---|
759 |
|
---|
760 | mpush (nextLo[0], nextHi[0], nextD[0]);
|
---|
761 | mpush (nextLo[1], nextHi[1], nextD[1]);
|
---|
762 | mpush (nextLo[2], nextHi[2], nextD[2]);
|
---|
763 | }
|
---|
764 | }
|
---|
765 |
|
---|
766 | #undef mswap
|
---|
767 | #undef mvswap
|
---|
768 | #undef mpush
|
---|
769 | #undef mpop
|
---|
770 | #undef mmin
|
---|
771 | #undef mnextsize
|
---|
772 | #undef mnextswap
|
---|
773 | #undef MAIN_QSORT_SMALL_THRESH
|
---|
774 | #undef MAIN_QSORT_DEPTH_THRESH
|
---|
775 | #undef MAIN_QSORT_STACK_SIZE
|
---|
776 |
|
---|
777 |
|
---|
778 | /*---------------------------------------------*/
|
---|
779 | /* Pre:
|
---|
780 | nblock > N_OVERSHOOT
|
---|
781 | block32 exists for [0 .. nblock-1 +N_OVERSHOOT]
|
---|
782 | ((UChar*)block32) [0 .. nblock-1] holds block
|
---|
783 | ptr exists for [0 .. nblock-1]
|
---|
784 |
|
---|
785 | Post:
|
---|
786 | ((UChar*)block32) [0 .. nblock-1] holds block
|
---|
787 | All other areas of block32 destroyed
|
---|
788 | ftab [0 .. 65536 ] destroyed
|
---|
789 | ptr [0 .. nblock-1] holds sorted order
|
---|
790 | if (*budget < 0), sorting was abandoned
|
---|
791 | */
|
---|
792 |
|
---|
793 | #define BIGFREQ(b) (ftab[((b)+1) << 8] - ftab[(b) << 8])
|
---|
794 | #define SETMASK (1 << 21)
|
---|
795 | #define CLEARMASK (~(SETMASK))
|
---|
796 |
|
---|
797 | static
|
---|
798 | void mainSort ( UInt32* ptr,
|
---|
799 | UChar* block,
|
---|
800 | UInt16* quadrant,
|
---|
801 | UInt32* ftab,
|
---|
802 | Int32 nblock,
|
---|
803 | Int32 verb,
|
---|
804 | Int32* budget )
|
---|
805 | {
|
---|
806 | Int32 i, j, k, ss, sb;
|
---|
807 | Int32 runningOrder[256];
|
---|
808 | Bool bigDone[256];
|
---|
809 | Int32 copyStart[256];
|
---|
810 | Int32 copyEnd [256];
|
---|
811 | UChar c1;
|
---|
812 | Int32 numQSorted;
|
---|
813 | UInt16 s;
|
---|
814 | if (verb >= 4) VPrintf0 ( " main sort initialise ...\n" );
|
---|
815 |
|
---|
816 | /*-- set up the 2-byte frequency table --*/
|
---|
817 | for (i = 65536; i >= 0; i--) ftab[i] = 0;
|
---|
818 |
|
---|
819 | j = block[0] << 8;
|
---|
820 | i = nblock-1;
|
---|
821 | for (; i >= 3; i -= 4) {
|
---|
822 | quadrant[i] = 0;
|
---|
823 | j = (j >> 8) | ( ((UInt16)block[i]) << 8);
|
---|
824 | ftab[j]++;
|
---|
825 | quadrant[i-1] = 0;
|
---|
826 | j = (j >> 8) | ( ((UInt16)block[i-1]) << 8);
|
---|
827 | ftab[j]++;
|
---|
828 | quadrant[i-2] = 0;
|
---|
829 | j = (j >> 8) | ( ((UInt16)block[i-2]) << 8);
|
---|
830 | ftab[j]++;
|
---|
831 | quadrant[i-3] = 0;
|
---|
832 | j = (j >> 8) | ( ((UInt16)block[i-3]) << 8);
|
---|
833 | ftab[j]++;
|
---|
834 | }
|
---|
835 | for (; i >= 0; i--) {
|
---|
836 | quadrant[i] = 0;
|
---|
837 | j = (j >> 8) | ( ((UInt16)block[i]) << 8);
|
---|
838 | ftab[j]++;
|
---|
839 | }
|
---|
840 |
|
---|
841 | /*-- (emphasises close relationship of block & quadrant) --*/
|
---|
842 | for (i = 0; i < BZ_N_OVERSHOOT; i++) {
|
---|
843 | block [nblock+i] = block[i];
|
---|
844 | quadrant[nblock+i] = 0;
|
---|
845 | }
|
---|
846 |
|
---|
847 | if (verb >= 4) VPrintf0 ( " bucket sorting ...\n" );
|
---|
848 |
|
---|
849 | /*-- Complete the initial radix sort --*/
|
---|
850 | for (i = 1; i <= 65536; i++) ftab[i] += ftab[i-1];
|
---|
851 |
|
---|
852 | s = block[0] << 8;
|
---|
853 | i = nblock-1;
|
---|
854 | for (; i >= 3; i -= 4) {
|
---|
855 | s = (s >> 8) | (block[i] << 8);
|
---|
856 | j = ftab[s] -1;
|
---|
857 | ftab[s] = j;
|
---|
858 | ptr[j] = i;
|
---|
859 | s = (s >> 8) | (block[i-1] << 8);
|
---|
860 | j = ftab[s] -1;
|
---|
861 | ftab[s] = j;
|
---|
862 | ptr[j] = i-1;
|
---|
863 | s = (s >> 8) | (block[i-2] << 8);
|
---|
864 | j = ftab[s] -1;
|
---|
865 | ftab[s] = j;
|
---|
866 | ptr[j] = i-2;
|
---|
867 | s = (s >> 8) | (block[i-3] << 8);
|
---|
868 | j = ftab[s] -1;
|
---|
869 | ftab[s] = j;
|
---|
870 | ptr[j] = i-3;
|
---|
871 | }
|
---|
872 | for (; i >= 0; i--) {
|
---|
873 | s = (s >> 8) | (block[i] << 8);
|
---|
874 | j = ftab[s] -1;
|
---|
875 | ftab[s] = j;
|
---|
876 | ptr[j] = i;
|
---|
877 | }
|
---|
878 |
|
---|
879 | /*--
|
---|
880 | Now ftab contains the first loc of every small bucket.
|
---|
881 | Calculate the running order, from smallest to largest
|
---|
882 | big bucket.
|
---|
883 | --*/
|
---|
884 | for (i = 0; i <= 255; i++) {
|
---|
885 | bigDone [i] = False;
|
---|
886 | runningOrder[i] = i;
|
---|
887 | }
|
---|
888 |
|
---|
889 | {
|
---|
890 | Int32 vv;
|
---|
891 | Int32 h = 1;
|
---|
892 | do h = 3 * h + 1; while (h <= 256);
|
---|
893 | do {
|
---|
894 | h = h / 3;
|
---|
895 | for (i = h; i <= 255; i++) {
|
---|
896 | vv = runningOrder[i];
|
---|
897 | j = i;
|
---|
898 | while ( BIGFREQ(runningOrder[j-h]) > BIGFREQ(vv) ) {
|
---|
899 | runningOrder[j] = runningOrder[j-h];
|
---|
900 | j = j - h;
|
---|
901 | if (j <= (h - 1)) goto zero;
|
---|
902 | }
|
---|
903 | zero:
|
---|
904 | runningOrder[j] = vv;
|
---|
905 | }
|
---|
906 | } while (h != 1);
|
---|
907 | }
|
---|
908 |
|
---|
909 | /*--
|
---|
910 | The main sorting loop.
|
---|
911 | --*/
|
---|
912 |
|
---|
913 | numQSorted = 0;
|
---|
914 |
|
---|
915 | for (i = 0; i <= 255; i++) {
|
---|
916 |
|
---|
917 | /*--
|
---|
918 | Process big buckets, starting with the least full.
|
---|
919 | Basically this is a 3-step process in which we call
|
---|
920 | mainQSort3 to sort the small buckets [ss, j], but
|
---|
921 | also make a big effort to avoid the calls if we can.
|
---|
922 | --*/
|
---|
923 | ss = runningOrder[i];
|
---|
924 |
|
---|
925 | /*--
|
---|
926 | Step 1:
|
---|
927 | Complete the big bucket [ss] by quicksorting
|
---|
928 | any unsorted small buckets [ss, j], for j != ss.
|
---|
929 | Hopefully previous pointer-scanning phases have already
|
---|
930 | completed many of the small buckets [ss, j], so
|
---|
931 | we don't have to sort them at all.
|
---|
932 | --*/
|
---|
933 | for (j = 0; j <= 255; j++) {
|
---|
934 | if (j != ss) {
|
---|
935 | sb = (ss << 8) + j;
|
---|
936 | if ( ! (ftab[sb] & SETMASK) ) {
|
---|
937 | Int32 lo = ftab[sb] & CLEARMASK;
|
---|
938 | Int32 hi = (ftab[sb+1] & CLEARMASK) - 1;
|
---|
939 | if (hi > lo) {
|
---|
940 | if (verb >= 4)
|
---|
941 | VPrintf4 ( " qsort [0x%x, 0x%x] "
|
---|
942 | "done %d this %d\n",
|
---|
943 | ss, j, numQSorted, hi - lo + 1 );
|
---|
944 | mainQSort3 (
|
---|
945 | ptr, block, quadrant, nblock,
|
---|
946 | lo, hi, BZ_N_RADIX, budget
|
---|
947 | );
|
---|
948 | numQSorted += (hi - lo + 1);
|
---|
949 | if (*budget < 0) return;
|
---|
950 | }
|
---|
951 | }
|
---|
952 | ftab[sb] |= SETMASK;
|
---|
953 | }
|
---|
954 | }
|
---|
955 |
|
---|
956 | AssertH ( !bigDone[ss], 1006 );
|
---|
957 |
|
---|
958 | /*--
|
---|
959 | Step 2:
|
---|
960 | Now scan this big bucket [ss] so as to synthesise the
|
---|
961 | sorted order for small buckets [t, ss] for all t,
|
---|
962 | including, magically, the bucket [ss,ss] too.
|
---|
963 | This will avoid doing Real Work in subsequent Step 1's.
|
---|
964 | --*/
|
---|
965 | {
|
---|
966 | for (j = 0; j <= 255; j++) {
|
---|
967 | copyStart[j] = ftab[(j << 8) + ss] & CLEARMASK;
|
---|
968 | copyEnd [j] = (ftab[(j << 8) + ss + 1] & CLEARMASK) - 1;
|
---|
969 | }
|
---|
970 | for (j = ftab[ss << 8] & CLEARMASK; j < copyStart[ss]; j++) {
|
---|
971 | k = ptr[j]-1; if (k < 0) k += nblock;
|
---|
972 | c1 = block[k];
|
---|
973 | if (!bigDone[c1])
|
---|
974 | ptr[ copyStart[c1]++ ] = k;
|
---|
975 | }
|
---|
976 | for (j = (ftab[(ss+1) << 8] & CLEARMASK) - 1; j > copyEnd[ss]; j--) {
|
---|
977 | k = ptr[j]-1; if (k < 0) k += nblock;
|
---|
978 | c1 = block[k];
|
---|
979 | if (!bigDone[c1])
|
---|
980 | ptr[ copyEnd[c1]-- ] = k;
|
---|
981 | }
|
---|
982 | }
|
---|
983 |
|
---|
984 | AssertH ( (copyStart[ss]-1 == copyEnd[ss])
|
---|
985 | ||
|
---|
986 | /* Extremely rare case missing in bzip2-1.0.0 and 1.0.1.
|
---|
987 | Necessity for this case is demonstrated by compressing
|
---|
988 | a sequence of approximately 48.5 million of character
|
---|
989 | 251; 1.0.0/1.0.1 will then die here. */
|
---|
990 | (copyStart[ss] == 0 && copyEnd[ss] == nblock-1),
|
---|
991 | 1007 )
|
---|
992 |
|
---|
993 | for (j = 0; j <= 255; j++) ftab[(j << 8) + ss] |= SETMASK;
|
---|
994 |
|
---|
995 | /*--
|
---|
996 | Step 3:
|
---|
997 | The [ss] big bucket is now done. Record this fact,
|
---|
998 | and update the quadrant descriptors. Remember to
|
---|
999 | update quadrants in the overshoot area too, if
|
---|
1000 | necessary. The "if (i < 255)" test merely skips
|
---|
1001 | this updating for the last bucket processed, since
|
---|
1002 | updating for the last bucket is pointless.
|
---|
1003 |
|
---|
1004 | The quadrant array provides a way to incrementally
|
---|
1005 | cache sort orderings, as they appear, so as to
|
---|
1006 | make subsequent comparisons in fullGtU() complete
|
---|
1007 | faster. For repetitive blocks this makes a big
|
---|
1008 | difference (but not big enough to be able to avoid
|
---|
1009 | the fallback sorting mechanism, exponential radix sort).
|
---|
1010 |
|
---|
1011 | The precise meaning is: at all times:
|
---|
1012 |
|
---|
1013 | for 0 <= i < nblock and 0 <= j <= nblock
|
---|
1014 |
|
---|
1015 | if block[i] != block[j],
|
---|
1016 |
|
---|
1017 | then the relative values of quadrant[i] and
|
---|
1018 | quadrant[j] are meaningless.
|
---|
1019 |
|
---|
1020 | else {
|
---|
1021 | if quadrant[i] < quadrant[j]
|
---|
1022 | then the string starting at i lexicographically
|
---|
1023 | precedes the string starting at j
|
---|
1024 |
|
---|
1025 | else if quadrant[i] > quadrant[j]
|
---|
1026 | then the string starting at j lexicographically
|
---|
1027 | precedes the string starting at i
|
---|
1028 |
|
---|
1029 | else
|
---|
1030 | the relative ordering of the strings starting
|
---|
1031 | at i and j has not yet been determined.
|
---|
1032 | }
|
---|
1033 | --*/
|
---|
1034 | bigDone[ss] = True;
|
---|
1035 |
|
---|
1036 | if (i < 255) {
|
---|
1037 | Int32 bbStart = ftab[ss << 8] & CLEARMASK;
|
---|
1038 | Int32 bbSize = (ftab[(ss+1) << 8] & CLEARMASK) - bbStart;
|
---|
1039 | Int32 shifts = 0;
|
---|
1040 |
|
---|
1041 | while ((bbSize >> shifts) > 65534) shifts++;
|
---|
1042 |
|
---|
1043 | for (j = bbSize-1; j >= 0; j--) {
|
---|
1044 | Int32 a2update = ptr[bbStart + j];
|
---|
1045 | UInt16 qVal = (UInt16)(j >> shifts);
|
---|
1046 | quadrant[a2update] = qVal;
|
---|
1047 | if (a2update < BZ_N_OVERSHOOT)
|
---|
1048 | quadrant[a2update + nblock] = qVal;
|
---|
1049 | }
|
---|
1050 | AssertH ( ((bbSize-1) >> shifts) <= 65535, 1002 );
|
---|
1051 | }
|
---|
1052 |
|
---|
1053 | }
|
---|
1054 |
|
---|
1055 | if (verb >= 4)
|
---|
1056 | VPrintf3 ( " %d pointers, %d sorted, %d scanned\n",
|
---|
1057 | nblock, numQSorted, nblock - numQSorted );
|
---|
1058 | }
|
---|
1059 |
|
---|
1060 | #undef BIGFREQ
|
---|
1061 | #undef SETMASK
|
---|
1062 | #undef CLEARMASK
|
---|
1063 |
|
---|
1064 |
|
---|
1065 | /*---------------------------------------------*/
|
---|
1066 | /* Pre:
|
---|
1067 | nblock > 0
|
---|
1068 | arr2 exists for [0 .. nblock-1 +N_OVERSHOOT]
|
---|
1069 | ((UChar*)arr2) [0 .. nblock-1] holds block
|
---|
1070 | arr1 exists for [0 .. nblock-1]
|
---|
1071 |
|
---|
1072 | Post:
|
---|
1073 | ((UChar*)arr2) [0 .. nblock-1] holds block
|
---|
1074 | All other areas of block destroyed
|
---|
1075 | ftab [ 0 .. 65536 ] destroyed
|
---|
1076 | arr1 [0 .. nblock-1] holds sorted order
|
---|
1077 | */
|
---|
1078 | void BZ2_blockSort ( EState* s )
|
---|
1079 | {
|
---|
1080 | UInt32* ptr = s->ptr;
|
---|
1081 | UChar* block = s->block;
|
---|
1082 | UInt32* ftab = s->ftab;
|
---|
1083 | Int32 nblock = s->nblock;
|
---|
1084 | Int32 verb = s->verbosity;
|
---|
1085 | Int32 wfact = s->workFactor;
|
---|
1086 | UInt16* quadrant;
|
---|
1087 | Int32 budget;
|
---|
1088 | Int32 budgetInit;
|
---|
1089 | Int32 i;
|
---|
1090 |
|
---|
1091 | if (nblock < 10000) {
|
---|
1092 | fallbackSort ( s->arr1, s->arr2, ftab, nblock, verb );
|
---|
1093 | } else {
|
---|
1094 | /* Calculate the location for quadrant, remembering to get
|
---|
1095 | the alignment right. Assumes that &(block[0]) is at least
|
---|
1096 | 2-byte aligned -- this should be ok since block is really
|
---|
1097 | the first section of arr2.
|
---|
1098 | */
|
---|
1099 | i = nblock+BZ_N_OVERSHOOT;
|
---|
1100 | if (i & 1) i++;
|
---|
1101 | quadrant = (UInt16*)(&(block[i]));
|
---|
1102 |
|
---|
1103 | /* (wfact-1) / 3 puts the default-factor-30
|
---|
1104 | transition point at very roughly the same place as
|
---|
1105 | with v0.1 and v0.9.0.
|
---|
1106 | Not that it particularly matters any more, since the
|
---|
1107 | resulting compressed stream is now the same regardless
|
---|
1108 | of whether or not we use the main sort or fallback sort.
|
---|
1109 | */
|
---|
1110 | if (wfact < 1 ) wfact = 1;
|
---|
1111 | if (wfact > 100) wfact = 100;
|
---|
1112 | budgetInit = nblock * ((wfact-1) / 3);
|
---|
1113 | budget = budgetInit;
|
---|
1114 |
|
---|
1115 | mainSort ( ptr, block, quadrant, ftab, nblock, verb, &budget );
|
---|
1116 | if (verb >= 3)
|
---|
1117 | VPrintf3 ( " %d work, %d block, ratio %5.2f\n",
|
---|
1118 | budgetInit - budget,
|
---|
1119 | nblock,
|
---|
1120 | (float)(budgetInit - budget) /
|
---|
1121 | (float)(nblock==0 ? 1 : nblock) );
|
---|
1122 | if (budget < 0) {
|
---|
1123 | if (verb >= 2)
|
---|
1124 | VPrintf0 ( " too repetitive; using fallback"
|
---|
1125 | " sorting algorithm\n" );
|
---|
1126 | fallbackSort ( s->arr1, s->arr2, ftab, nblock, verb );
|
---|
1127 | }
|
---|
1128 | }
|
---|
1129 |
|
---|
1130 | s->origPtr = -1;
|
---|
1131 | for (i = 0; i < s->nblock; i++)
|
---|
1132 | if (ptr[i] == 0)
|
---|
1133 | { s->origPtr = i; break; };
|
---|
1134 |
|
---|
1135 | AssertH( s->origPtr != -1, 1003 );
|
---|
1136 | }
|
---|
1137 |
|
---|
1138 |
|
---|
1139 | /*-------------------------------------------------------------*/
|
---|
1140 | /*--- end blocksort.c ---*/
|
---|
1141 | /*-------------------------------------------------------------*/
|
---|