[9] | 1 | /*-
|
---|
| 2 | * Copyright (c) 1992 Keith Muller.
|
---|
| 3 | * Copyright (c) 1992, 1993
|
---|
| 4 | * The Regents of the University of California. All rights reserved.
|
---|
| 5 | *
|
---|
| 6 | * This code is derived from software contributed to Berkeley by
|
---|
| 7 | * Keith Muller of the University of California, San Diego.
|
---|
| 8 | *
|
---|
| 9 | * Redistribution and use in source and binary forms, with or without
|
---|
| 10 | * modification, are permitted provided that the following conditions
|
---|
| 11 | * are met:
|
---|
| 12 | * 1. Redistributions of source code must retain the above copyright
|
---|
| 13 | * notice, this list of conditions and the following disclaimer.
|
---|
| 14 | * 2. Redistributions in binary form must reproduce the above copyright
|
---|
| 15 | * notice, this list of conditions and the following disclaimer in the
|
---|
| 16 | * documentation and/or other materials provided with the distribution.
|
---|
| 17 | * 4. Neither the name of the University nor the names of its contributors
|
---|
| 18 | * may be used to endorse or promote products derived from this software
|
---|
| 19 | * without specific prior written permission.
|
---|
| 20 | *
|
---|
| 21 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
---|
| 22 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
---|
| 23 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
---|
| 24 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
---|
| 25 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
---|
| 26 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
---|
| 27 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
---|
| 28 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
---|
| 29 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
---|
| 30 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
---|
| 31 | * SUCH DAMAGE.
|
---|
| 32 | */
|
---|
| 33 |
|
---|
| 34 | #ifndef lint
|
---|
| 35 | #if 0
|
---|
| 36 | static char sccsid[] = "@(#)tables.c 8.1 (Berkeley) 5/31/93";
|
---|
| 37 | #endif
|
---|
| 38 | #endif /* not lint */
|
---|
| 39 |
|
---|
| 40 | #include <sys/types.h>
|
---|
| 41 | #include <sys/time.h>
|
---|
| 42 | #include <sys/stat.h>
|
---|
| 43 | #include <fcntl.h>
|
---|
| 44 | #include <errno.h>
|
---|
| 45 | #include <stdio.h>
|
---|
| 46 | #include <stdlib.h>
|
---|
| 47 | #include <string.h>
|
---|
| 48 | #include <unistd.h>
|
---|
| 49 | #include "pax.h"
|
---|
| 50 | #include "tables.h"
|
---|
| 51 | #include "extern.h"
|
---|
| 52 |
|
---|
| 53 | /*
|
---|
| 54 | * Routines for controlling the contents of all the different databases pax
|
---|
| 55 | * keeps. Tables are dynamically created only when they are needed. The
|
---|
| 56 | * goal was speed and the ability to work with HUGE archives. The databases
|
---|
| 57 | * were kept simple, but do have complex rules for when the contents change.
|
---|
| 58 | * As of this writing, the POSIX library functions were more complex than
|
---|
| 59 | * needed for this application (pax databases have very short lifetimes and
|
---|
| 60 | * do not survive after pax is finished). Pax is required to handle very
|
---|
| 61 | * large archives. These database routines carefully combine memory usage and
|
---|
| 62 | * temporary file storage in ways which will not significantly impact runtime
|
---|
| 63 | * performance while allowing the largest possible archives to be handled.
|
---|
| 64 | * Trying to force the fit to the POSIX databases routines was not considered
|
---|
| 65 | * time well spent.
|
---|
| 66 | */
|
---|
| 67 |
|
---|
| 68 | static HRDLNK **ltab = NULL; /* hard link table for detecting hard links */
|
---|
| 69 | static FTM **ftab = NULL; /* file time table for updating arch */
|
---|
| 70 | static NAMT **ntab = NULL; /* interactive rename storage table */
|
---|
| 71 | static DEVT **dtab = NULL; /* device/inode mapping tables */
|
---|
| 72 | static ATDIR **atab = NULL; /* file tree directory time reset table */
|
---|
| 73 | static int dirfd = -1; /* storage for setting created dir time/mode */
|
---|
| 74 | static u_long dircnt; /* entries in dir time/mode storage */
|
---|
| 75 | static int ffd = -1; /* tmp file for file time table name storage */
|
---|
| 76 |
|
---|
| 77 | static DEVT *chk_dev(dev_t, int);
|
---|
| 78 |
|
---|
| 79 | /*
|
---|
| 80 | * hard link table routines
|
---|
| 81 | *
|
---|
| 82 | * The hard link table tries to detect hard links to files using the device and
|
---|
| 83 | * inode values. We do this when writing an archive, so we can tell the format
|
---|
| 84 | * write routine that this file is a hard link to another file. The format
|
---|
| 85 | * write routine then can store this file in whatever way it wants (as a hard
|
---|
| 86 | * link if the format supports that like tar, or ignore this info like cpio).
|
---|
| 87 | * (Actually a field in the format driver table tells us if the format wants
|
---|
| 88 | * hard link info. if not, we do not waste time looking for them). We also use
|
---|
| 89 | * the same table when reading an archive. In that situation, this table is
|
---|
| 90 | * used by the format read routine to detect hard links from stored dev and
|
---|
| 91 | * inode numbers (like cpio). This will allow pax to create a link when one
|
---|
| 92 | * can be detected by the archive format.
|
---|
| 93 | */
|
---|
| 94 |
|
---|
| 95 | /*
|
---|
| 96 | * lnk_start
|
---|
| 97 | * Creates the hard link table.
|
---|
| 98 | * Return:
|
---|
| 99 | * 0 if created, -1 if failure
|
---|
| 100 | */
|
---|
| 101 |
|
---|
| 102 | int
|
---|
| 103 | lnk_start(void)
|
---|
| 104 | {
|
---|
| 105 | if (ltab != NULL)
|
---|
| 106 | return(0);
|
---|
| 107 | if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
|
---|
| 108 | paxwarn(1, "Cannot allocate memory for hard link table");
|
---|
| 109 | return(-1);
|
---|
| 110 | }
|
---|
| 111 | return(0);
|
---|
| 112 | }
|
---|
| 113 |
|
---|
| 114 | /*
|
---|
| 115 | * chk_lnk()
|
---|
| 116 | * Looks up entry in hard link hash table. If found, it copies the name
|
---|
| 117 | * of the file it is linked to (we already saw that file) into ln_name.
|
---|
| 118 | * lnkcnt is decremented and if goes to 1 the node is deleted from the
|
---|
| 119 | * database. (We have seen all the links to this file). If not found,
|
---|
| 120 | * we add the file to the database if it has the potential for having
|
---|
| 121 | * hard links to other files we may process (it has a link count > 1)
|
---|
| 122 | * Return:
|
---|
| 123 | * if found returns 1; if not found returns 0; -1 on error
|
---|
| 124 | */
|
---|
| 125 |
|
---|
| 126 | int
|
---|
| 127 | chk_lnk(ARCHD *arcn)
|
---|
| 128 | {
|
---|
| 129 | HRDLNK *pt;
|
---|
| 130 | HRDLNK **ppt;
|
---|
| 131 | u_int indx;
|
---|
| 132 |
|
---|
| 133 | if (ltab == NULL)
|
---|
| 134 | return(-1);
|
---|
| 135 | /*
|
---|
| 136 | * ignore those nodes that cannot have hard links
|
---|
| 137 | */
|
---|
| 138 | if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
|
---|
| 139 | return(0);
|
---|
| 140 |
|
---|
| 141 | /*
|
---|
| 142 | * hash inode number and look for this file
|
---|
| 143 | */
|
---|
| 144 | indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
|
---|
| 145 | if ((pt = ltab[indx]) != NULL) {
|
---|
| 146 | /*
|
---|
| 147 | * it's hash chain in not empty, walk down looking for it
|
---|
| 148 | */
|
---|
| 149 | ppt = &(ltab[indx]);
|
---|
| 150 | while (pt != NULL) {
|
---|
| 151 | if ((pt->ino == arcn->sb.st_ino) &&
|
---|
| 152 | (pt->dev == arcn->sb.st_dev))
|
---|
| 153 | break;
|
---|
| 154 | ppt = &(pt->fow);
|
---|
| 155 | pt = pt->fow;
|
---|
| 156 | }
|
---|
| 157 |
|
---|
| 158 | if (pt != NULL) {
|
---|
| 159 | /*
|
---|
| 160 | * found a link. set the node type and copy in the
|
---|
| 161 | * name of the file it is to link to. we need to
|
---|
| 162 | * handle hardlinks to regular files differently than
|
---|
| 163 | * other links.
|
---|
| 164 | */
|
---|
| 165 | arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
|
---|
| 166 | sizeof(arcn->ln_name) - 1);
|
---|
| 167 | arcn->ln_name[arcn->ln_nlen] = '\0';
|
---|
| 168 | if (arcn->type == PAX_REG)
|
---|
| 169 | arcn->type = PAX_HRG;
|
---|
| 170 | else
|
---|
| 171 | arcn->type = PAX_HLK;
|
---|
| 172 |
|
---|
| 173 | /*
|
---|
| 174 | * if we have found all the links to this file, remove
|
---|
| 175 | * it from the database
|
---|
| 176 | */
|
---|
| 177 | if (--pt->nlink <= 1) {
|
---|
| 178 | *ppt = pt->fow;
|
---|
| 179 | (void)free((char *)pt->name);
|
---|
| 180 | (void)free((char *)pt);
|
---|
| 181 | }
|
---|
| 182 | return(1);
|
---|
| 183 | }
|
---|
| 184 | }
|
---|
| 185 |
|
---|
| 186 | /*
|
---|
| 187 | * we never saw this file before. It has links so we add it to the
|
---|
| 188 | * front of this hash chain
|
---|
| 189 | */
|
---|
| 190 | if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
|
---|
| 191 | if ((pt->name = strdup(arcn->name)) != NULL) {
|
---|
| 192 | pt->dev = arcn->sb.st_dev;
|
---|
| 193 | pt->ino = arcn->sb.st_ino;
|
---|
| 194 | pt->nlink = arcn->sb.st_nlink;
|
---|
| 195 | pt->fow = ltab[indx];
|
---|
| 196 | ltab[indx] = pt;
|
---|
| 197 | return(0);
|
---|
| 198 | }
|
---|
| 199 | (void)free((char *)pt);
|
---|
| 200 | }
|
---|
| 201 |
|
---|
| 202 | paxwarn(1, "Hard link table out of memory");
|
---|
| 203 | return(-1);
|
---|
| 204 | }
|
---|
| 205 |
|
---|
| 206 | /*
|
---|
| 207 | * purg_lnk
|
---|
| 208 | * remove reference for a file that we may have added to the data base as
|
---|
| 209 | * a potential source for hard links. We ended up not using the file, so
|
---|
| 210 | * we do not want to accidently point another file at it later on.
|
---|
| 211 | */
|
---|
| 212 |
|
---|
| 213 | void
|
---|
| 214 | purg_lnk(ARCHD *arcn)
|
---|
| 215 | {
|
---|
| 216 | HRDLNK *pt;
|
---|
| 217 | HRDLNK **ppt;
|
---|
| 218 | u_int indx;
|
---|
| 219 |
|
---|
| 220 | if (ltab == NULL)
|
---|
| 221 | return;
|
---|
| 222 | /*
|
---|
| 223 | * do not bother to look if it could not be in the database
|
---|
| 224 | */
|
---|
| 225 | if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
|
---|
| 226 | (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
|
---|
| 227 | return;
|
---|
| 228 |
|
---|
| 229 | /*
|
---|
| 230 | * find the hash chain for this inode value, if empty return
|
---|
| 231 | */
|
---|
| 232 | indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
|
---|
| 233 | if ((pt = ltab[indx]) == NULL)
|
---|
| 234 | return;
|
---|
| 235 |
|
---|
| 236 | /*
|
---|
| 237 | * walk down the list looking for the inode/dev pair, unlink and
|
---|
| 238 | * free if found
|
---|
| 239 | */
|
---|
| 240 | ppt = &(ltab[indx]);
|
---|
| 241 | while (pt != NULL) {
|
---|
| 242 | if ((pt->ino == arcn->sb.st_ino) &&
|
---|
| 243 | (pt->dev == arcn->sb.st_dev))
|
---|
| 244 | break;
|
---|
| 245 | ppt = &(pt->fow);
|
---|
| 246 | pt = pt->fow;
|
---|
| 247 | }
|
---|
| 248 | if (pt == NULL)
|
---|
| 249 | return;
|
---|
| 250 |
|
---|
| 251 | /*
|
---|
| 252 | * remove and free it
|
---|
| 253 | */
|
---|
| 254 | *ppt = pt->fow;
|
---|
| 255 | (void)free((char *)pt->name);
|
---|
| 256 | (void)free((char *)pt);
|
---|
| 257 | }
|
---|
| 258 |
|
---|
| 259 | /*
|
---|
| 260 | * lnk_end()
|
---|
| 261 | * Pull apart an existing link table so we can reuse it. We do this between
|
---|
| 262 | * read and write phases of append with update. (The format may have
|
---|
| 263 | * used the link table, and we need to start with a fresh table for the
|
---|
| 264 | * write phase).
|
---|
| 265 | */
|
---|
| 266 |
|
---|
| 267 | void
|
---|
| 268 | lnk_end(void)
|
---|
| 269 | {
|
---|
| 270 | int i;
|
---|
| 271 | HRDLNK *pt;
|
---|
| 272 | HRDLNK *ppt;
|
---|
| 273 |
|
---|
| 274 | if (ltab == NULL)
|
---|
| 275 | return;
|
---|
| 276 |
|
---|
| 277 | for (i = 0; i < L_TAB_SZ; ++i) {
|
---|
| 278 | if (ltab[i] == NULL)
|
---|
| 279 | continue;
|
---|
| 280 | pt = ltab[i];
|
---|
| 281 | ltab[i] = NULL;
|
---|
| 282 |
|
---|
| 283 | /*
|
---|
| 284 | * free up each entry on this chain
|
---|
| 285 | */
|
---|
| 286 | while (pt != NULL) {
|
---|
| 287 | ppt = pt;
|
---|
| 288 | pt = ppt->fow;
|
---|
| 289 | (void)free((char *)ppt->name);
|
---|
| 290 | (void)free((char *)ppt);
|
---|
| 291 | }
|
---|
| 292 | }
|
---|
| 293 | return;
|
---|
| 294 | }
|
---|
| 295 |
|
---|
| 296 | /*
|
---|
| 297 | * modification time table routines
|
---|
| 298 | *
|
---|
| 299 | * The modification time table keeps track of last modification times for all
|
---|
| 300 | * files stored in an archive during a write phase when -u is set. We only
|
---|
| 301 | * add a file to the archive if it is newer than a file with the same name
|
---|
| 302 | * already stored on the archive (if there is no other file with the same
|
---|
| 303 | * name on the archive it is added). This applies to writes and appends.
|
---|
| 304 | * An append with an -u must read the archive and store the modification time
|
---|
| 305 | * for every file on that archive before starting the write phase. It is clear
|
---|
| 306 | * that this is one HUGE database. To save memory space, the actual file names
|
---|
| 307 | * are stored in a scatch file and indexed by an in memory hash table. The
|
---|
| 308 | * hash table is indexed by hashing the file path. The nodes in the table store
|
---|
| 309 | * the length of the filename and the lseek offset within the scratch file
|
---|
| 310 | * where the actual name is stored. Since there are never any deletions to this
|
---|
| 311 | * table, fragmentation of the scratch file is never an issue. Lookups seem to
|
---|
| 312 | * not exhibit any locality at all (files in the database are rarely
|
---|
| 313 | * looked up more than once...). So caching is just a waste of memory. The
|
---|
| 314 | * only limitation is the amount of scatch file space available to store the
|
---|
| 315 | * path names.
|
---|
| 316 | */
|
---|
| 317 |
|
---|
| 318 | /*
|
---|
| 319 | * ftime_start()
|
---|
| 320 | * create the file time hash table and open for read/write the scratch
|
---|
| 321 | * file. (after created it is unlinked, so when we exit we leave
|
---|
| 322 | * no witnesses).
|
---|
| 323 | * Return:
|
---|
| 324 | * 0 if the table and file was created ok, -1 otherwise
|
---|
| 325 | */
|
---|
| 326 |
|
---|
| 327 | int
|
---|
| 328 | ftime_start(void)
|
---|
| 329 | {
|
---|
| 330 |
|
---|
| 331 | if (ftab != NULL)
|
---|
| 332 | return(0);
|
---|
| 333 | if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
|
---|
| 334 | paxwarn(1, "Cannot allocate memory for file time table");
|
---|
| 335 | return(-1);
|
---|
| 336 | }
|
---|
| 337 |
|
---|
| 338 | /*
|
---|
| 339 | * get random name and create temporary scratch file, unlink name
|
---|
| 340 | * so it will get removed on exit
|
---|
| 341 | */
|
---|
| 342 | memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
|
---|
| 343 | if ((ffd = mkstemp(tempfile)) < 0) {
|
---|
| 344 | syswarn(1, errno, "Unable to create temporary file: %s",
|
---|
| 345 | tempfile);
|
---|
| 346 | return(-1);
|
---|
| 347 | }
|
---|
| 348 | (void)unlink(tempfile);
|
---|
| 349 |
|
---|
| 350 | return(0);
|
---|
| 351 | }
|
---|
| 352 |
|
---|
| 353 | /*
|
---|
| 354 | * chk_ftime()
|
---|
| 355 | * looks up entry in file time hash table. If not found, the file is
|
---|
| 356 | * added to the hash table and the file named stored in the scratch file.
|
---|
| 357 | * If a file with the same name is found, the file times are compared and
|
---|
| 358 | * the most recent file time is retained. If the new file was younger (or
|
---|
| 359 | * was not in the database) the new file is selected for storage.
|
---|
| 360 | * Return:
|
---|
| 361 | * 0 if file should be added to the archive, 1 if it should be skipped,
|
---|
| 362 | * -1 on error
|
---|
| 363 | */
|
---|
| 364 |
|
---|
| 365 | int
|
---|
| 366 | chk_ftime(ARCHD *arcn)
|
---|
| 367 | {
|
---|
| 368 | FTM *pt;
|
---|
| 369 | int namelen;
|
---|
| 370 | u_int indx;
|
---|
| 371 | char ckname[PAXPATHLEN+1];
|
---|
| 372 |
|
---|
| 373 | /*
|
---|
| 374 | * no info, go ahead and add to archive
|
---|
| 375 | */
|
---|
| 376 | if (ftab == NULL)
|
---|
| 377 | return(0);
|
---|
| 378 |
|
---|
| 379 | /*
|
---|
| 380 | * hash the pathname and look up in table
|
---|
| 381 | */
|
---|
| 382 | namelen = arcn->nlen;
|
---|
| 383 | indx = st_hash(arcn->name, namelen, F_TAB_SZ);
|
---|
| 384 | if ((pt = ftab[indx]) != NULL) {
|
---|
| 385 | /*
|
---|
| 386 | * the hash chain is not empty, walk down looking for match
|
---|
| 387 | * only read up the path names if the lengths match, speeds
|
---|
| 388 | * up the search a lot
|
---|
| 389 | */
|
---|
| 390 | while (pt != NULL) {
|
---|
| 391 | if (pt->namelen == namelen) {
|
---|
| 392 | /*
|
---|
| 393 | * potential match, have to read the name
|
---|
| 394 | * from the scratch file.
|
---|
| 395 | */
|
---|
| 396 | if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
|
---|
| 397 | syswarn(1, errno,
|
---|
| 398 | "Failed ftime table seek");
|
---|
| 399 | return(-1);
|
---|
| 400 | }
|
---|
| 401 | if (read(ffd, ckname, namelen) != namelen) {
|
---|
| 402 | syswarn(1, errno,
|
---|
| 403 | "Failed ftime table read");
|
---|
| 404 | return(-1);
|
---|
| 405 | }
|
---|
| 406 |
|
---|
| 407 | /*
|
---|
| 408 | * if the names match, we are done
|
---|
| 409 | */
|
---|
| 410 | if (!strncmp(ckname, arcn->name, namelen))
|
---|
| 411 | break;
|
---|
| 412 | }
|
---|
| 413 |
|
---|
| 414 | /*
|
---|
| 415 | * try the next entry on the chain
|
---|
| 416 | */
|
---|
| 417 | pt = pt->fow;
|
---|
| 418 | }
|
---|
| 419 |
|
---|
| 420 | if (pt != NULL) {
|
---|
| 421 | /*
|
---|
| 422 | * found the file, compare the times, save the newer
|
---|
| 423 | */
|
---|
| 424 | if (arcn->sb.st_mtime > pt->mtime) {
|
---|
| 425 | /*
|
---|
| 426 | * file is newer
|
---|
| 427 | */
|
---|
| 428 | pt->mtime = arcn->sb.st_mtime;
|
---|
| 429 | return(0);
|
---|
| 430 | }
|
---|
| 431 | /*
|
---|
| 432 | * file is older
|
---|
| 433 | */
|
---|
| 434 | return(1);
|
---|
| 435 | }
|
---|
| 436 | }
|
---|
| 437 |
|
---|
| 438 | /*
|
---|
| 439 | * not in table, add it
|
---|
| 440 | */
|
---|
| 441 | if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
|
---|
| 442 | /*
|
---|
| 443 | * add the name at the end of the scratch file, saving the
|
---|
| 444 | * offset. add the file to the head of the hash chain
|
---|
| 445 | */
|
---|
| 446 | if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
|
---|
| 447 | if (write(ffd, arcn->name, namelen) == namelen) {
|
---|
| 448 | pt->mtime = arcn->sb.st_mtime;
|
---|
| 449 | pt->namelen = namelen;
|
---|
| 450 | pt->fow = ftab[indx];
|
---|
| 451 | ftab[indx] = pt;
|
---|
| 452 | return(0);
|
---|
| 453 | }
|
---|
| 454 | syswarn(1, errno, "Failed write to file time table");
|
---|
| 455 | } else
|
---|
| 456 | syswarn(1, errno, "Failed seek on file time table");
|
---|
| 457 | } else
|
---|
| 458 | paxwarn(1, "File time table ran out of memory");
|
---|
| 459 |
|
---|
| 460 | if (pt != NULL)
|
---|
| 461 | (void)free((char *)pt);
|
---|
| 462 | return(-1);
|
---|
| 463 | }
|
---|
| 464 |
|
---|
| 465 | /*
|
---|
| 466 | * Interactive rename table routines
|
---|
| 467 | *
|
---|
| 468 | * The interactive rename table keeps track of the new names that the user
|
---|
| 469 | * assigns to files from tty input. Since this map is unique for each file
|
---|
| 470 | * we must store it in case there is a reference to the file later in archive
|
---|
| 471 | * (a link). Otherwise we will be unable to find the file we know was
|
---|
| 472 | * extracted. The remapping of these files is stored in a memory based hash
|
---|
| 473 | * table (it is assumed since input must come from /dev/tty, it is unlikely to
|
---|
| 474 | * be a very large table).
|
---|
| 475 | */
|
---|
| 476 |
|
---|
| 477 | /*
|
---|
| 478 | * name_start()
|
---|
| 479 | * create the interactive rename table
|
---|
| 480 | * Return:
|
---|
| 481 | * 0 if successful, -1 otherwise
|
---|
| 482 | */
|
---|
| 483 |
|
---|
| 484 | int
|
---|
| 485 | name_start(void)
|
---|
| 486 | {
|
---|
| 487 | if (ntab != NULL)
|
---|
| 488 | return(0);
|
---|
| 489 | if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
|
---|
| 490 | paxwarn(1, "Cannot allocate memory for interactive rename table");
|
---|
| 491 | return(-1);
|
---|
| 492 | }
|
---|
| 493 | return(0);
|
---|
| 494 | }
|
---|
| 495 |
|
---|
| 496 | /*
|
---|
| 497 | * add_name()
|
---|
| 498 | * add the new name to old name mapping just created by the user.
|
---|
| 499 | * If an old name mapping is found (there may be duplicate names on an
|
---|
| 500 | * archive) only the most recent is kept.
|
---|
| 501 | * Return:
|
---|
| 502 | * 0 if added, -1 otherwise
|
---|
| 503 | */
|
---|
| 504 |
|
---|
| 505 | int
|
---|
| 506 | add_name(char *oname, int onamelen, char *nname)
|
---|
| 507 | {
|
---|
| 508 | NAMT *pt;
|
---|
| 509 | u_int indx;
|
---|
| 510 |
|
---|
| 511 | if (ntab == NULL) {
|
---|
| 512 | /*
|
---|
| 513 | * should never happen
|
---|
| 514 | */
|
---|
| 515 | paxwarn(0, "No interactive rename table, links may fail\n");
|
---|
| 516 | return(0);
|
---|
| 517 | }
|
---|
| 518 |
|
---|
| 519 | /*
|
---|
| 520 | * look to see if we have already mapped this file, if so we
|
---|
| 521 | * will update it
|
---|
| 522 | */
|
---|
| 523 | indx = st_hash(oname, onamelen, N_TAB_SZ);
|
---|
| 524 | if ((pt = ntab[indx]) != NULL) {
|
---|
| 525 | /*
|
---|
| 526 | * look down the has chain for the file
|
---|
| 527 | */
|
---|
| 528 | while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
|
---|
| 529 | pt = pt->fow;
|
---|
| 530 |
|
---|
| 531 | if (pt != NULL) {
|
---|
| 532 | /*
|
---|
| 533 | * found an old mapping, replace it with the new one
|
---|
| 534 | * the user just input (if it is different)
|
---|
| 535 | */
|
---|
| 536 | if (strcmp(nname, pt->nname) == 0)
|
---|
| 537 | return(0);
|
---|
| 538 |
|
---|
| 539 | (void)free((char *)pt->nname);
|
---|
| 540 | if ((pt->nname = strdup(nname)) == NULL) {
|
---|
| 541 | paxwarn(1, "Cannot update rename table");
|
---|
| 542 | return(-1);
|
---|
| 543 | }
|
---|
| 544 | return(0);
|
---|
| 545 | }
|
---|
| 546 | }
|
---|
| 547 |
|
---|
| 548 | /*
|
---|
| 549 | * this is a new mapping, add it to the table
|
---|
| 550 | */
|
---|
| 551 | if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
|
---|
| 552 | if ((pt->oname = strdup(oname)) != NULL) {
|
---|
| 553 | if ((pt->nname = strdup(nname)) != NULL) {
|
---|
| 554 | pt->fow = ntab[indx];
|
---|
| 555 | ntab[indx] = pt;
|
---|
| 556 | return(0);
|
---|
| 557 | }
|
---|
| 558 | (void)free((char *)pt->oname);
|
---|
| 559 | }
|
---|
| 560 | (void)free((char *)pt);
|
---|
| 561 | }
|
---|
| 562 | paxwarn(1, "Interactive rename table out of memory");
|
---|
| 563 | return(-1);
|
---|
| 564 | }
|
---|
| 565 |
|
---|
| 566 | /*
|
---|
| 567 | * sub_name()
|
---|
| 568 | * look up a link name to see if it points at a file that has been
|
---|
| 569 | * remapped by the user. If found, the link is adjusted to contain the
|
---|
| 570 | * new name (oname is the link to name)
|
---|
| 571 | */
|
---|
| 572 |
|
---|
| 573 | void
|
---|
| 574 | sub_name(char *oname, int *onamelen, size_t onamesize)
|
---|
| 575 | {
|
---|
| 576 | NAMT *pt;
|
---|
| 577 | u_int indx;
|
---|
| 578 |
|
---|
| 579 | if (ntab == NULL)
|
---|
| 580 | return;
|
---|
| 581 | /*
|
---|
| 582 | * look the name up in the hash table
|
---|
| 583 | */
|
---|
| 584 | indx = st_hash(oname, *onamelen, N_TAB_SZ);
|
---|
| 585 | if ((pt = ntab[indx]) == NULL)
|
---|
| 586 | return;
|
---|
| 587 |
|
---|
| 588 | while (pt != NULL) {
|
---|
| 589 | /*
|
---|
| 590 | * walk down the hash chain looking for a match
|
---|
| 591 | */
|
---|
| 592 | if (strcmp(oname, pt->oname) == 0) {
|
---|
| 593 | /*
|
---|
| 594 | * found it, replace it with the new name
|
---|
| 595 | * and return (we know that oname has enough space)
|
---|
| 596 | */
|
---|
| 597 | *onamelen = l_strncpy(oname, pt->nname, onamesize - 1);
|
---|
| 598 | oname[*onamelen] = '\0';
|
---|
| 599 | return;
|
---|
| 600 | }
|
---|
| 601 | pt = pt->fow;
|
---|
| 602 | }
|
---|
| 603 |
|
---|
| 604 | /*
|
---|
| 605 | * no match, just return
|
---|
| 606 | */
|
---|
| 607 | return;
|
---|
| 608 | }
|
---|
| 609 |
|
---|
| 610 | /*
|
---|
| 611 | * device/inode mapping table routines
|
---|
| 612 | * (used with formats that store device and inodes fields)
|
---|
| 613 | *
|
---|
| 614 | * device/inode mapping tables remap the device field in an archive header. The
|
---|
| 615 | * device/inode fields are used to determine when files are hard links to each
|
---|
| 616 | * other. However these values have very little meaning outside of that. This
|
---|
| 617 | * database is used to solve one of two different problems.
|
---|
| 618 | *
|
---|
| 619 | * 1) when files are appended to an archive, while the new files may have hard
|
---|
| 620 | * links to each other, you cannot determine if they have hard links to any
|
---|
| 621 | * file already stored on the archive from a prior run of pax. We must assume
|
---|
| 622 | * that these inode/device pairs are unique only within a SINGLE run of pax
|
---|
| 623 | * (which adds a set of files to an archive). So we have to make sure the
|
---|
| 624 | * inode/dev pairs we add each time are always unique. We do this by observing
|
---|
| 625 | * while the inode field is very dense, the use of the dev field is fairly
|
---|
| 626 | * sparse. Within each run of pax, we remap any device number of a new archive
|
---|
| 627 | * member that has a device number used in a prior run and already stored in a
|
---|
| 628 | * file on the archive. During the read phase of the append, we store the
|
---|
| 629 | * device numbers used and mark them to not be used by any file during the
|
---|
| 630 | * write phase. If during write we go to use one of those old device numbers,
|
---|
| 631 | * we remap it to a new value.
|
---|
| 632 | *
|
---|
| 633 | * 2) Often the fields in the archive header used to store these values are
|
---|
| 634 | * too small to store the entire value. The result is an inode or device value
|
---|
| 635 | * which can be truncated. This really can foul up an archive. With truncation
|
---|
| 636 | * we end up creating links between files that are really not links (after
|
---|
| 637 | * truncation the inodes are the same value). We address that by detecting
|
---|
| 638 | * truncation and forcing a remap of the device field to split truncated
|
---|
| 639 | * inodes away from each other. Each truncation creates a pattern of bits that
|
---|
| 640 | * are removed. We use this pattern of truncated bits to partition the inodes
|
---|
| 641 | * on a single device to many different devices (each one represented by the
|
---|
| 642 | * truncated bit pattern). All inodes on the same device that have the same
|
---|
| 643 | * truncation pattern are mapped to the same new device. Two inodes that
|
---|
| 644 | * truncate to the same value clearly will always have different truncation
|
---|
| 645 | * bit patterns, so they will be split from away each other. When we spot
|
---|
| 646 | * device truncation we remap the device number to a non truncated value.
|
---|
| 647 | * (for more info see table.h for the data structures involved).
|
---|
| 648 | */
|
---|
| 649 |
|
---|
| 650 | /*
|
---|
| 651 | * dev_start()
|
---|
| 652 | * create the device mapping table
|
---|
| 653 | * Return:
|
---|
| 654 | * 0 if successful, -1 otherwise
|
---|
| 655 | */
|
---|
| 656 |
|
---|
| 657 | int
|
---|
| 658 | dev_start(void)
|
---|
| 659 | {
|
---|
| 660 | if (dtab != NULL)
|
---|
| 661 | return(0);
|
---|
| 662 | if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
|
---|
| 663 | paxwarn(1, "Cannot allocate memory for device mapping table");
|
---|
| 664 | return(-1);
|
---|
| 665 | }
|
---|
| 666 | return(0);
|
---|
| 667 | }
|
---|
| 668 |
|
---|
| 669 | /*
|
---|
| 670 | * add_dev()
|
---|
| 671 | * add a device number to the table. this will force the device to be
|
---|
| 672 | * remapped to a new value if it be used during a write phase. This
|
---|
| 673 | * function is called during the read phase of an append to prohibit the
|
---|
| 674 | * use of any device number already in the archive.
|
---|
| 675 | * Return:
|
---|
| 676 | * 0 if added ok, -1 otherwise
|
---|
| 677 | */
|
---|
| 678 |
|
---|
| 679 | int
|
---|
| 680 | add_dev(ARCHD *arcn)
|
---|
| 681 | {
|
---|
| 682 | if (chk_dev(arcn->sb.st_dev, 1) == NULL)
|
---|
| 683 | return(-1);
|
---|
| 684 | return(0);
|
---|
| 685 | }
|
---|
| 686 |
|
---|
| 687 | /*
|
---|
| 688 | * chk_dev()
|
---|
| 689 | * check for a device value in the device table. If not found and the add
|
---|
| 690 | * flag is set, it is added. This does NOT assign any mapping values, just
|
---|
| 691 | * adds the device number as one that need to be remapped. If this device
|
---|
| 692 | * is already mapped, just return with a pointer to that entry.
|
---|
| 693 | * Return:
|
---|
| 694 | * pointer to the entry for this device in the device map table. Null
|
---|
| 695 | * if the add flag is not set and the device is not in the table (it is
|
---|
| 696 | * not been seen yet). If add is set and the device cannot be added, null
|
---|
| 697 | * is returned (indicates an error).
|
---|
| 698 | */
|
---|
| 699 |
|
---|
| 700 | static DEVT *
|
---|
| 701 | chk_dev(dev_t dev, int add)
|
---|
| 702 | {
|
---|
| 703 | DEVT *pt;
|
---|
| 704 | u_int indx;
|
---|
| 705 |
|
---|
| 706 | if (dtab == NULL)
|
---|
| 707 | return(NULL);
|
---|
| 708 | /*
|
---|
| 709 | * look to see if this device is already in the table
|
---|
| 710 | */
|
---|
| 711 | indx = ((unsigned)dev) % D_TAB_SZ;
|
---|
| 712 | if ((pt = dtab[indx]) != NULL) {
|
---|
| 713 | while ((pt != NULL) && (pt->dev != dev))
|
---|
| 714 | pt = pt->fow;
|
---|
| 715 |
|
---|
| 716 | /*
|
---|
| 717 | * found it, return a pointer to it
|
---|
| 718 | */
|
---|
| 719 | if (pt != NULL)
|
---|
| 720 | return(pt);
|
---|
| 721 | }
|
---|
| 722 |
|
---|
| 723 | /*
|
---|
| 724 | * not in table, we add it only if told to as this may just be a check
|
---|
| 725 | * to see if a device number is being used.
|
---|
| 726 | */
|
---|
| 727 | if (add == 0)
|
---|
| 728 | return(NULL);
|
---|
| 729 |
|
---|
| 730 | /*
|
---|
| 731 | * allocate a node for this device and add it to the front of the hash
|
---|
| 732 | * chain. Note we do not assign remaps values here, so the pt->list
|
---|
| 733 | * list must be NULL.
|
---|
| 734 | */
|
---|
| 735 | if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
|
---|
| 736 | paxwarn(1, "Device map table out of memory");
|
---|
| 737 | return(NULL);
|
---|
| 738 | }
|
---|
| 739 | pt->dev = dev;
|
---|
| 740 | pt->list = NULL;
|
---|
| 741 | pt->fow = dtab[indx];
|
---|
| 742 | dtab[indx] = pt;
|
---|
| 743 | return(pt);
|
---|
| 744 | }
|
---|
| 745 | /*
|
---|
| 746 | * map_dev()
|
---|
| 747 | * given an inode and device storage mask (the mask has a 1 for each bit
|
---|
| 748 | * the archive format is able to store in a header), we check for inode
|
---|
| 749 | * and device truncation and remap the device as required. Device mapping
|
---|
| 750 | * can also occur when during the read phase of append a device number was
|
---|
| 751 | * seen (and was marked as do not use during the write phase). WE ASSUME
|
---|
| 752 | * that unsigned longs are the same size or bigger than the fields used
|
---|
| 753 | * for ino_t and dev_t. If not the types will have to be changed.
|
---|
| 754 | * Return:
|
---|
| 755 | * 0 if all ok, -1 otherwise.
|
---|
| 756 | */
|
---|
| 757 |
|
---|
| 758 | int
|
---|
| 759 | map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
|
---|
| 760 | {
|
---|
| 761 | DEVT *pt;
|
---|
| 762 | DLIST *dpt;
|
---|
| 763 | static dev_t lastdev = 0; /* next device number to try */
|
---|
| 764 | int trc_ino = 0;
|
---|
| 765 | int trc_dev = 0;
|
---|
| 766 | ino_t trunc_bits = 0;
|
---|
| 767 | ino_t nino;
|
---|
| 768 |
|
---|
| 769 | if (dtab == NULL)
|
---|
| 770 | return(0);
|
---|
| 771 | /*
|
---|
| 772 | * check for device and inode truncation, and extract the truncated
|
---|
| 773 | * bit pattern.
|
---|
| 774 | */
|
---|
| 775 | if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
|
---|
| 776 | ++trc_dev;
|
---|
| 777 | if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
|
---|
| 778 | ++trc_ino;
|
---|
| 779 | trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
|
---|
| 780 | }
|
---|
| 781 |
|
---|
| 782 | /*
|
---|
| 783 | * see if this device is already being mapped, look up the device
|
---|
| 784 | * then find the truncation bit pattern which applies
|
---|
| 785 | */
|
---|
| 786 | if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
|
---|
| 787 | /*
|
---|
| 788 | * this device is already marked to be remapped
|
---|
| 789 | */
|
---|
| 790 | for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
|
---|
| 791 | if (dpt->trunc_bits == trunc_bits)
|
---|
| 792 | break;
|
---|
| 793 |
|
---|
| 794 | if (dpt != NULL) {
|
---|
| 795 | /*
|
---|
| 796 | * we are being remapped for this device and pattern
|
---|
| 797 | * change the device number to be stored and return
|
---|
| 798 | */
|
---|
| 799 | arcn->sb.st_dev = dpt->dev;
|
---|
| 800 | arcn->sb.st_ino = nino;
|
---|
| 801 | return(0);
|
---|
| 802 | }
|
---|
| 803 | } else {
|
---|
| 804 | /*
|
---|
| 805 | * this device is not being remapped YET. if we do not have any
|
---|
| 806 | * form of truncation, we do not need a remap
|
---|
| 807 | */
|
---|
| 808 | if (!trc_ino && !trc_dev)
|
---|
| 809 | return(0);
|
---|
| 810 |
|
---|
| 811 | /*
|
---|
| 812 | * we have truncation, have to add this as a device to remap
|
---|
| 813 | */
|
---|
| 814 | if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
|
---|
| 815 | goto bad;
|
---|
| 816 |
|
---|
| 817 | /*
|
---|
| 818 | * if we just have a truncated inode, we have to make sure that
|
---|
| 819 | * all future inodes that do not truncate (they have the
|
---|
| 820 | * truncation pattern of all 0's) continue to map to the same
|
---|
| 821 | * device number. We probably have already written inodes with
|
---|
| 822 | * this device number to the archive with the truncation
|
---|
| 823 | * pattern of all 0's. So we add the mapping for all 0's to the
|
---|
| 824 | * same device number.
|
---|
| 825 | */
|
---|
| 826 | if (!trc_dev && (trunc_bits != 0)) {
|
---|
| 827 | if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
|
---|
| 828 | goto bad;
|
---|
| 829 | dpt->trunc_bits = 0;
|
---|
| 830 | dpt->dev = arcn->sb.st_dev;
|
---|
| 831 | dpt->fow = pt->list;
|
---|
| 832 | pt->list = dpt;
|
---|
| 833 | }
|
---|
| 834 | }
|
---|
| 835 |
|
---|
| 836 | /*
|
---|
| 837 | * look for a device number not being used. We must watch for wrap
|
---|
| 838 | * around on lastdev (so we do not get stuck looking forever!)
|
---|
| 839 | */
|
---|
| 840 | while (++lastdev > 0) {
|
---|
| 841 | if (chk_dev(lastdev, 0) != NULL)
|
---|
| 842 | continue;
|
---|
| 843 | /*
|
---|
| 844 | * found an unused value. If we have reached truncation point
|
---|
| 845 | * for this format we are hosed, so we give up. Otherwise we
|
---|
| 846 | * mark it as being used.
|
---|
| 847 | */
|
---|
| 848 | if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
|
---|
| 849 | (chk_dev(lastdev, 1) == NULL))
|
---|
| 850 | goto bad;
|
---|
| 851 | break;
|
---|
| 852 | }
|
---|
| 853 |
|
---|
| 854 | if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
|
---|
| 855 | goto bad;
|
---|
| 856 |
|
---|
| 857 | /*
|
---|
| 858 | * got a new device number, store it under this truncation pattern.
|
---|
| 859 | * change the device number this file is being stored with.
|
---|
| 860 | */
|
---|
| 861 | dpt->trunc_bits = trunc_bits;
|
---|
| 862 | dpt->dev = lastdev;
|
---|
| 863 | dpt->fow = pt->list;
|
---|
| 864 | pt->list = dpt;
|
---|
| 865 | arcn->sb.st_dev = lastdev;
|
---|
| 866 | arcn->sb.st_ino = nino;
|
---|
| 867 | return(0);
|
---|
| 868 |
|
---|
| 869 | bad:
|
---|
| 870 | paxwarn(1, "Unable to fix truncated inode/device field when storing %s",
|
---|
| 871 | arcn->name);
|
---|
| 872 | paxwarn(0, "Archive may create improper hard links when extracted");
|
---|
| 873 | return(0);
|
---|
| 874 | }
|
---|
| 875 |
|
---|
| 876 | /*
|
---|
| 877 | * directory access/mod time reset table routines (for directories READ by pax)
|
---|
| 878 | *
|
---|
| 879 | * The pax -t flag requires that access times of archive files to be the same
|
---|
| 880 | * before being read by pax. For regular files, access time is restored after
|
---|
| 881 | * the file has been copied. This database provides the same functionality for
|
---|
| 882 | * directories read during file tree traversal. Restoring directory access time
|
---|
| 883 | * is more complex than files since directories may be read several times until
|
---|
| 884 | * all the descendants in their subtree are visited by fts. Directory access
|
---|
| 885 | * and modification times are stored during the fts pre-order visit (done
|
---|
| 886 | * before any descendants in the subtree is visited) and restored after the
|
---|
| 887 | * fts post-order visit (after all the descendants have been visited). In the
|
---|
| 888 | * case of premature exit from a subtree (like from the effects of -n), any
|
---|
| 889 | * directory entries left in this database are reset during final cleanup
|
---|
| 890 | * operations of pax. Entries are hashed by inode number for fast lookup.
|
---|
| 891 | */
|
---|
| 892 |
|
---|
| 893 | /*
|
---|
| 894 | * atdir_start()
|
---|
| 895 | * create the directory access time database for directories READ by pax.
|
---|
| 896 | * Return:
|
---|
| 897 | * 0 is created ok, -1 otherwise.
|
---|
| 898 | */
|
---|
| 899 |
|
---|
| 900 | int
|
---|
| 901 | atdir_start(void)
|
---|
| 902 | {
|
---|
| 903 | if (atab != NULL)
|
---|
| 904 | return(0);
|
---|
| 905 | if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
|
---|
| 906 | paxwarn(1,"Cannot allocate space for directory access time table");
|
---|
| 907 | return(-1);
|
---|
| 908 | }
|
---|
| 909 | return(0);
|
---|
| 910 | }
|
---|
| 911 |
|
---|
| 912 |
|
---|
| 913 | /*
|
---|
| 914 | * atdir_end()
|
---|
| 915 | * walk through the directory access time table and reset the access time
|
---|
| 916 | * of any directory who still has an entry left in the database. These
|
---|
| 917 | * entries are for directories READ by pax
|
---|
| 918 | */
|
---|
| 919 |
|
---|
| 920 | void
|
---|
| 921 | atdir_end(void)
|
---|
| 922 | {
|
---|
| 923 | ATDIR *pt;
|
---|
| 924 | int i;
|
---|
| 925 |
|
---|
| 926 | if (atab == NULL)
|
---|
| 927 | return;
|
---|
| 928 | /*
|
---|
| 929 | * for each non-empty hash table entry reset all the directories
|
---|
| 930 | * chained there.
|
---|
| 931 | */
|
---|
| 932 | for (i = 0; i < A_TAB_SZ; ++i) {
|
---|
| 933 | if ((pt = atab[i]) == NULL)
|
---|
| 934 | continue;
|
---|
| 935 | /*
|
---|
| 936 | * remember to force the times, set_ftime() looks at pmtime
|
---|
| 937 | * and patime, which only applies to things CREATED by pax,
|
---|
| 938 | * not read by pax. Read time reset is controlled by -t.
|
---|
| 939 | */
|
---|
| 940 | for (; pt != NULL; pt = pt->fow)
|
---|
| 941 | set_ftime(pt->name, pt->mtime, pt->atime, 1);
|
---|
| 942 | }
|
---|
| 943 | }
|
---|
| 944 |
|
---|
| 945 | /*
|
---|
| 946 | * add_atdir()
|
---|
| 947 | * add a directory to the directory access time table. Table is hashed
|
---|
| 948 | * and chained by inode number. This is for directories READ by pax
|
---|
| 949 | */
|
---|
| 950 |
|
---|
| 951 | void
|
---|
| 952 | add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
|
---|
| 953 | {
|
---|
| 954 | ATDIR *pt;
|
---|
| 955 | u_int indx;
|
---|
| 956 |
|
---|
| 957 | if (atab == NULL)
|
---|
| 958 | return;
|
---|
| 959 |
|
---|
| 960 | /*
|
---|
| 961 | * make sure this directory is not already in the table, if so just
|
---|
| 962 | * return (the older entry always has the correct time). The only
|
---|
| 963 | * way this will happen is when the same subtree can be traversed by
|
---|
| 964 | * different args to pax and the -n option is aborting fts out of a
|
---|
| 965 | * subtree before all the post-order visits have been made).
|
---|
| 966 | */
|
---|
| 967 | indx = ((unsigned)ino) % A_TAB_SZ;
|
---|
| 968 | if ((pt = atab[indx]) != NULL) {
|
---|
| 969 | while (pt != NULL) {
|
---|
| 970 | if ((pt->ino == ino) && (pt->dev == dev))
|
---|
| 971 | break;
|
---|
| 972 | pt = pt->fow;
|
---|
| 973 | }
|
---|
| 974 |
|
---|
| 975 | /*
|
---|
| 976 | * oops, already there. Leave it alone.
|
---|
| 977 | */
|
---|
| 978 | if (pt != NULL)
|
---|
| 979 | return;
|
---|
| 980 | }
|
---|
| 981 |
|
---|
| 982 | /*
|
---|
| 983 | * add it to the front of the hash chain
|
---|
| 984 | */
|
---|
| 985 | if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
|
---|
| 986 | if ((pt->name = strdup(fname)) != NULL) {
|
---|
| 987 | pt->dev = dev;
|
---|
| 988 | pt->ino = ino;
|
---|
| 989 | pt->mtime = mtime;
|
---|
| 990 | pt->atime = atime;
|
---|
| 991 | pt->fow = atab[indx];
|
---|
| 992 | atab[indx] = pt;
|
---|
| 993 | return;
|
---|
| 994 | }
|
---|
| 995 | (void)free((char *)pt);
|
---|
| 996 | }
|
---|
| 997 |
|
---|
| 998 | paxwarn(1, "Directory access time reset table ran out of memory");
|
---|
| 999 | return;
|
---|
| 1000 | }
|
---|
| 1001 |
|
---|
| 1002 | /*
|
---|
| 1003 | * get_atdir()
|
---|
| 1004 | * look up a directory by inode and device number to obtain the access
|
---|
| 1005 | * and modification time you want to set to. If found, the modification
|
---|
| 1006 | * and access time parameters are set and the entry is removed from the
|
---|
| 1007 | * table (as it is no longer needed). These are for directories READ by
|
---|
| 1008 | * pax
|
---|
| 1009 | * Return:
|
---|
| 1010 | * 0 if found, -1 if not found.
|
---|
| 1011 | */
|
---|
| 1012 |
|
---|
| 1013 | int
|
---|
| 1014 | get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
|
---|
| 1015 | {
|
---|
| 1016 | ATDIR *pt;
|
---|
| 1017 | ATDIR **ppt;
|
---|
| 1018 | u_int indx;
|
---|
| 1019 |
|
---|
| 1020 | if (atab == NULL)
|
---|
| 1021 | return(-1);
|
---|
| 1022 | /*
|
---|
| 1023 | * hash by inode and search the chain for an inode and device match
|
---|
| 1024 | */
|
---|
| 1025 | indx = ((unsigned)ino) % A_TAB_SZ;
|
---|
| 1026 | if ((pt = atab[indx]) == NULL)
|
---|
| 1027 | return(-1);
|
---|
| 1028 |
|
---|
| 1029 | ppt = &(atab[indx]);
|
---|
| 1030 | while (pt != NULL) {
|
---|
| 1031 | if ((pt->ino == ino) && (pt->dev == dev))
|
---|
| 1032 | break;
|
---|
| 1033 | /*
|
---|
| 1034 | * no match, go to next one
|
---|
| 1035 | */
|
---|
| 1036 | ppt = &(pt->fow);
|
---|
| 1037 | pt = pt->fow;
|
---|
| 1038 | }
|
---|
| 1039 |
|
---|
| 1040 | /*
|
---|
| 1041 | * return if we did not find it.
|
---|
| 1042 | */
|
---|
| 1043 | if (pt == NULL)
|
---|
| 1044 | return(-1);
|
---|
| 1045 |
|
---|
| 1046 | /*
|
---|
| 1047 | * found it. return the times and remove the entry from the table.
|
---|
| 1048 | */
|
---|
| 1049 | *ppt = pt->fow;
|
---|
| 1050 | *mtime = pt->mtime;
|
---|
| 1051 | *atime = pt->atime;
|
---|
| 1052 | (void)free((char *)pt->name);
|
---|
| 1053 | (void)free((char *)pt);
|
---|
| 1054 | return(0);
|
---|
| 1055 | }
|
---|
| 1056 |
|
---|
| 1057 | /*
|
---|
| 1058 | * directory access mode and time storage routines (for directories CREATED
|
---|
| 1059 | * by pax).
|
---|
| 1060 | *
|
---|
| 1061 | * Pax requires that extracted directories, by default, have their access/mod
|
---|
| 1062 | * times and permissions set to the values specified in the archive. During the
|
---|
| 1063 | * actions of extracting (and creating the destination subtree during -rw copy)
|
---|
| 1064 | * directories extracted may be modified after being created. Even worse is
|
---|
| 1065 | * that these directories may have been created with file permissions which
|
---|
| 1066 | * prohibits any descendants of these directories from being extracted. When
|
---|
| 1067 | * directories are created by pax, access rights may be added to permit the
|
---|
| 1068 | * creation of files in their subtree. Every time pax creates a directory, the
|
---|
| 1069 | * times and file permissions specified by the archive are stored. After all
|
---|
| 1070 | * files have been extracted (or copied), these directories have their times
|
---|
| 1071 | * and file modes reset to the stored values. The directory info is restored in
|
---|
| 1072 | * reverse order as entries were added to the data file from root to leaf. To
|
---|
| 1073 | * restore atime properly, we must go backwards. The data file consists of
|
---|
| 1074 | * records with two parts, the file name followed by a DIRDATA trailer. The
|
---|
| 1075 | * fixed sized trailer contains the size of the name plus the off_t location in
|
---|
| 1076 | * the file. To restore we work backwards through the file reading the trailer
|
---|
| 1077 | * then the file name.
|
---|
| 1078 | */
|
---|
| 1079 |
|
---|
| 1080 | /*
|
---|
| 1081 | * dir_start()
|
---|
| 1082 | * set up the directory time and file mode storage for directories CREATED
|
---|
| 1083 | * by pax.
|
---|
| 1084 | * Return:
|
---|
| 1085 | * 0 if ok, -1 otherwise
|
---|
| 1086 | */
|
---|
| 1087 |
|
---|
| 1088 | int
|
---|
| 1089 | dir_start(void)
|
---|
| 1090 | {
|
---|
| 1091 |
|
---|
| 1092 | if (dirfd != -1)
|
---|
| 1093 | return(0);
|
---|
| 1094 |
|
---|
| 1095 | /*
|
---|
| 1096 | * unlink the file so it goes away at termination by itself
|
---|
| 1097 | */
|
---|
| 1098 | memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
|
---|
| 1099 | if ((dirfd = mkstemp(tempfile)) >= 0) {
|
---|
| 1100 | (void)unlink(tempfile);
|
---|
| 1101 | return(0);
|
---|
| 1102 | }
|
---|
| 1103 | paxwarn(1, "Unable to create temporary file for directory times: %s",
|
---|
| 1104 | tempfile);
|
---|
| 1105 | return(-1);
|
---|
| 1106 | }
|
---|
| 1107 |
|
---|
| 1108 | /*
|
---|
| 1109 | * add_dir()
|
---|
| 1110 | * add the mode and times for a newly CREATED directory
|
---|
| 1111 | * name is name of the directory, psb the stat buffer with the data in it,
|
---|
| 1112 | * frc_mode is a flag that says whether to force the setting of the mode
|
---|
| 1113 | * (ignoring the user set values for preserving file mode). Frc_mode is
|
---|
| 1114 | * for the case where we created a file and found that the resulting
|
---|
| 1115 | * directory was not writeable and the user asked for file modes to NOT
|
---|
| 1116 | * be preserved. (we have to preserve what was created by default, so we
|
---|
| 1117 | * have to force the setting at the end. this is stated explicitly in the
|
---|
| 1118 | * pax spec)
|
---|
| 1119 | */
|
---|
| 1120 |
|
---|
| 1121 | void
|
---|
| 1122 | add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
|
---|
| 1123 | {
|
---|
| 1124 | DIRDATA dblk;
|
---|
| 1125 |
|
---|
| 1126 | if (dirfd < 0)
|
---|
| 1127 | return;
|
---|
| 1128 |
|
---|
| 1129 | /*
|
---|
| 1130 | * get current position (where file name will start) so we can store it
|
---|
| 1131 | * in the trailer
|
---|
| 1132 | */
|
---|
| 1133 | if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
|
---|
| 1134 | paxwarn(1,"Unable to store mode and times for directory: %s",name);
|
---|
| 1135 | return;
|
---|
| 1136 | }
|
---|
| 1137 |
|
---|
| 1138 | /*
|
---|
| 1139 | * write the file name followed by the trailer
|
---|
| 1140 | */
|
---|
| 1141 | dblk.nlen = nlen + 1;
|
---|
| 1142 | dblk.mode = psb->st_mode & 0xffff;
|
---|
| 1143 | dblk.mtime = psb->st_mtime;
|
---|
| 1144 | dblk.atime = psb->st_atime;
|
---|
| 1145 | dblk.frc_mode = frc_mode;
|
---|
| 1146 | if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
|
---|
| 1147 | (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
|
---|
| 1148 | ++dircnt;
|
---|
| 1149 | return;
|
---|
| 1150 | }
|
---|
| 1151 |
|
---|
| 1152 | paxwarn(1,"Unable to store mode and times for created directory: %s",name);
|
---|
| 1153 | return;
|
---|
| 1154 | }
|
---|
| 1155 |
|
---|
| 1156 | /*
|
---|
| 1157 | * proc_dir()
|
---|
| 1158 | * process all file modes and times stored for directories CREATED
|
---|
| 1159 | * by pax
|
---|
| 1160 | */
|
---|
| 1161 |
|
---|
| 1162 | void
|
---|
| 1163 | proc_dir(void)
|
---|
| 1164 | {
|
---|
| 1165 | char name[PAXPATHLEN+1];
|
---|
| 1166 | DIRDATA dblk;
|
---|
| 1167 | u_long cnt;
|
---|
| 1168 |
|
---|
| 1169 | if (dirfd < 0)
|
---|
| 1170 | return;
|
---|
| 1171 | /*
|
---|
| 1172 | * read backwards through the file and process each directory
|
---|
| 1173 | */
|
---|
| 1174 | for (cnt = 0; cnt < dircnt; ++cnt) {
|
---|
| 1175 | /*
|
---|
| 1176 | * read the trailer, then the file name, if this fails
|
---|
| 1177 | * just give up.
|
---|
| 1178 | */
|
---|
| 1179 | if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
|
---|
| 1180 | break;
|
---|
| 1181 | if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
|
---|
| 1182 | break;
|
---|
| 1183 | if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
|
---|
| 1184 | break;
|
---|
| 1185 | if (read(dirfd, name, dblk.nlen) != dblk.nlen)
|
---|
| 1186 | break;
|
---|
| 1187 | if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
|
---|
| 1188 | break;
|
---|
| 1189 |
|
---|
| 1190 | /*
|
---|
| 1191 | * frc_mode set, make sure we set the file modes even if
|
---|
| 1192 | * the user didn't ask for it (see file_subs.c for more info)
|
---|
| 1193 | */
|
---|
| 1194 | if (pmode || dblk.frc_mode)
|
---|
| 1195 | set_pmode(name, dblk.mode);
|
---|
| 1196 | if (patime || pmtime)
|
---|
| 1197 | set_ftime(name, dblk.mtime, dblk.atime, 0);
|
---|
| 1198 | }
|
---|
| 1199 |
|
---|
| 1200 | (void)close(dirfd);
|
---|
| 1201 | dirfd = -1;
|
---|
| 1202 | if (cnt != dircnt)
|
---|
| 1203 | paxwarn(1,"Unable to set mode and times for created directories");
|
---|
| 1204 | return;
|
---|
| 1205 | }
|
---|
| 1206 |
|
---|
| 1207 | /*
|
---|
| 1208 | * database independent routines
|
---|
| 1209 | */
|
---|
| 1210 |
|
---|
| 1211 | /*
|
---|
| 1212 | * st_hash()
|
---|
| 1213 | * hashes filenames to a u_int for hashing into a table. Looks at the tail
|
---|
| 1214 | * end of file, as this provides far better distribution than any other
|
---|
| 1215 | * part of the name. For performance reasons we only care about the last
|
---|
| 1216 | * MAXKEYLEN chars (should be at LEAST large enough to pick off the file
|
---|
| 1217 | * name). Was tested on 500,000 name file tree traversal from the root
|
---|
| 1218 | * and gave almost a perfectly uniform distribution of keys when used with
|
---|
| 1219 | * prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
|
---|
| 1220 | * chars at a time and pads with 0 for last addition.
|
---|
| 1221 | * Return:
|
---|
| 1222 | * the hash value of the string MOD (%) the table size.
|
---|
| 1223 | */
|
---|
| 1224 |
|
---|
| 1225 | u_int
|
---|
| 1226 | st_hash(char *name, int len, int tabsz)
|
---|
| 1227 | {
|
---|
| 1228 | char *pt;
|
---|
| 1229 | char *dest;
|
---|
| 1230 | char *end;
|
---|
| 1231 | int i;
|
---|
| 1232 | u_int key = 0;
|
---|
| 1233 | int steps;
|
---|
| 1234 | int res;
|
---|
| 1235 | u_int val;
|
---|
| 1236 |
|
---|
| 1237 | /*
|
---|
| 1238 | * only look at the tail up to MAXKEYLEN, we do not need to waste
|
---|
| 1239 | * time here (remember these are pathnames, the tail is what will
|
---|
| 1240 | * spread out the keys)
|
---|
| 1241 | */
|
---|
| 1242 | if (len > MAXKEYLEN) {
|
---|
| 1243 | pt = &(name[len - MAXKEYLEN]);
|
---|
| 1244 | len = MAXKEYLEN;
|
---|
| 1245 | } else
|
---|
| 1246 | pt = name;
|
---|
| 1247 |
|
---|
| 1248 | /*
|
---|
| 1249 | * calculate the number of u_int size steps in the string and if
|
---|
| 1250 | * there is a runt to deal with
|
---|
| 1251 | */
|
---|
| 1252 | steps = len/sizeof(u_int);
|
---|
| 1253 | res = len % sizeof(u_int);
|
---|
| 1254 |
|
---|
| 1255 | /*
|
---|
| 1256 | * add up the value of the string in unsigned integer sized pieces
|
---|
| 1257 | * too bad we cannot have unsigned int aligned strings, then we
|
---|
| 1258 | * could avoid the expensive copy.
|
---|
| 1259 | */
|
---|
| 1260 | for (i = 0; i < steps; ++i) {
|
---|
| 1261 | end = pt + sizeof(u_int);
|
---|
| 1262 | dest = (char *)&val;
|
---|
| 1263 | while (pt < end)
|
---|
| 1264 | *dest++ = *pt++;
|
---|
| 1265 | key += val;
|
---|
| 1266 | }
|
---|
| 1267 |
|
---|
| 1268 | /*
|
---|
| 1269 | * add in the runt padded with zero to the right
|
---|
| 1270 | */
|
---|
| 1271 | if (res) {
|
---|
| 1272 | val = 0;
|
---|
| 1273 | end = pt + res;
|
---|
| 1274 | dest = (char *)&val;
|
---|
| 1275 | while (pt < end)
|
---|
| 1276 | *dest++ = *pt++;
|
---|
| 1277 | key += val;
|
---|
| 1278 | }
|
---|
| 1279 |
|
---|
| 1280 | /*
|
---|
| 1281 | * return the result mod the table size
|
---|
| 1282 | */
|
---|
| 1283 | return(key % tabsz);
|
---|
| 1284 | }
|
---|