1 | /*-
|
---|
2 | * Copyright (c) 1992 Keith Muller.
|
---|
3 | * Copyright (c) 1992, 1993
|
---|
4 | * The Regents of the University of California. All rights reserved.
|
---|
5 | *
|
---|
6 | * This code is derived from software contributed to Berkeley by
|
---|
7 | * Keith Muller of the University of California, San Diego.
|
---|
8 | *
|
---|
9 | * Redistribution and use in source and binary forms, with or without
|
---|
10 | * modification, are permitted provided that the following conditions
|
---|
11 | * are met:
|
---|
12 | * 1. Redistributions of source code must retain the above copyright
|
---|
13 | * notice, this list of conditions and the following disclaimer.
|
---|
14 | * 2. Redistributions in binary form must reproduce the above copyright
|
---|
15 | * notice, this list of conditions and the following disclaimer in the
|
---|
16 | * documentation and/or other materials provided with the distribution.
|
---|
17 | * 4. Neither the name of the University nor the names of its contributors
|
---|
18 | * may be used to endorse or promote products derived from this software
|
---|
19 | * without specific prior written permission.
|
---|
20 | *
|
---|
21 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
---|
22 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
---|
23 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
---|
24 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
---|
25 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
---|
26 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
---|
27 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
---|
28 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
---|
29 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
---|
30 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
---|
31 | * SUCH DAMAGE.
|
---|
32 | */
|
---|
33 |
|
---|
34 | #ifndef lint
|
---|
35 | #if 0
|
---|
36 | static char sccsid[] = "@(#)tables.c 8.1 (Berkeley) 5/31/93";
|
---|
37 | #endif
|
---|
38 | #endif /* not lint */
|
---|
39 |
|
---|
40 | #include <sys/types.h>
|
---|
41 | #include <sys/time.h>
|
---|
42 | #include <sys/stat.h>
|
---|
43 | #include <fcntl.h>
|
---|
44 | #include <errno.h>
|
---|
45 | #include <stdio.h>
|
---|
46 | #include <stdlib.h>
|
---|
47 | #include <string.h>
|
---|
48 | #include <unistd.h>
|
---|
49 | #include "pax.h"
|
---|
50 | #include "tables.h"
|
---|
51 | #include "extern.h"
|
---|
52 |
|
---|
53 | /*
|
---|
54 | * Routines for controlling the contents of all the different databases pax
|
---|
55 | * keeps. Tables are dynamically created only when they are needed. The
|
---|
56 | * goal was speed and the ability to work with HUGE archives. The databases
|
---|
57 | * were kept simple, but do have complex rules for when the contents change.
|
---|
58 | * As of this writing, the POSIX library functions were more complex than
|
---|
59 | * needed for this application (pax databases have very short lifetimes and
|
---|
60 | * do not survive after pax is finished). Pax is required to handle very
|
---|
61 | * large archives. These database routines carefully combine memory usage and
|
---|
62 | * temporary file storage in ways which will not significantly impact runtime
|
---|
63 | * performance while allowing the largest possible archives to be handled.
|
---|
64 | * Trying to force the fit to the POSIX databases routines was not considered
|
---|
65 | * time well spent.
|
---|
66 | */
|
---|
67 |
|
---|
68 | static HRDLNK **ltab = NULL; /* hard link table for detecting hard links */
|
---|
69 | static FTM **ftab = NULL; /* file time table for updating arch */
|
---|
70 | static NAMT **ntab = NULL; /* interactive rename storage table */
|
---|
71 | static DEVT **dtab = NULL; /* device/inode mapping tables */
|
---|
72 | static ATDIR **atab = NULL; /* file tree directory time reset table */
|
---|
73 | static int dirfd = -1; /* storage for setting created dir time/mode */
|
---|
74 | static u_long dircnt; /* entries in dir time/mode storage */
|
---|
75 | static int ffd = -1; /* tmp file for file time table name storage */
|
---|
76 |
|
---|
77 | static DEVT *chk_dev(dev_t, int);
|
---|
78 |
|
---|
79 | /*
|
---|
80 | * hard link table routines
|
---|
81 | *
|
---|
82 | * The hard link table tries to detect hard links to files using the device and
|
---|
83 | * inode values. We do this when writing an archive, so we can tell the format
|
---|
84 | * write routine that this file is a hard link to another file. The format
|
---|
85 | * write routine then can store this file in whatever way it wants (as a hard
|
---|
86 | * link if the format supports that like tar, or ignore this info like cpio).
|
---|
87 | * (Actually a field in the format driver table tells us if the format wants
|
---|
88 | * hard link info. if not, we do not waste time looking for them). We also use
|
---|
89 | * the same table when reading an archive. In that situation, this table is
|
---|
90 | * used by the format read routine to detect hard links from stored dev and
|
---|
91 | * inode numbers (like cpio). This will allow pax to create a link when one
|
---|
92 | * can be detected by the archive format.
|
---|
93 | */
|
---|
94 |
|
---|
95 | /*
|
---|
96 | * lnk_start
|
---|
97 | * Creates the hard link table.
|
---|
98 | * Return:
|
---|
99 | * 0 if created, -1 if failure
|
---|
100 | */
|
---|
101 |
|
---|
102 | int
|
---|
103 | lnk_start(void)
|
---|
104 | {
|
---|
105 | if (ltab != NULL)
|
---|
106 | return(0);
|
---|
107 | if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
|
---|
108 | paxwarn(1, "Cannot allocate memory for hard link table");
|
---|
109 | return(-1);
|
---|
110 | }
|
---|
111 | return(0);
|
---|
112 | }
|
---|
113 |
|
---|
114 | /*
|
---|
115 | * chk_lnk()
|
---|
116 | * Looks up entry in hard link hash table. If found, it copies the name
|
---|
117 | * of the file it is linked to (we already saw that file) into ln_name.
|
---|
118 | * lnkcnt is decremented and if goes to 1 the node is deleted from the
|
---|
119 | * database. (We have seen all the links to this file). If not found,
|
---|
120 | * we add the file to the database if it has the potential for having
|
---|
121 | * hard links to other files we may process (it has a link count > 1)
|
---|
122 | * Return:
|
---|
123 | * if found returns 1; if not found returns 0; -1 on error
|
---|
124 | */
|
---|
125 |
|
---|
126 | int
|
---|
127 | chk_lnk(ARCHD *arcn)
|
---|
128 | {
|
---|
129 | HRDLNK *pt;
|
---|
130 | HRDLNK **ppt;
|
---|
131 | u_int indx;
|
---|
132 |
|
---|
133 | if (ltab == NULL)
|
---|
134 | return(-1);
|
---|
135 | /*
|
---|
136 | * ignore those nodes that cannot have hard links
|
---|
137 | */
|
---|
138 | if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
|
---|
139 | return(0);
|
---|
140 |
|
---|
141 | /*
|
---|
142 | * hash inode number and look for this file
|
---|
143 | */
|
---|
144 | indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
|
---|
145 | if ((pt = ltab[indx]) != NULL) {
|
---|
146 | /*
|
---|
147 | * it's hash chain in not empty, walk down looking for it
|
---|
148 | */
|
---|
149 | ppt = &(ltab[indx]);
|
---|
150 | while (pt != NULL) {
|
---|
151 | if ((pt->ino == arcn->sb.st_ino) &&
|
---|
152 | (pt->dev == arcn->sb.st_dev))
|
---|
153 | break;
|
---|
154 | ppt = &(pt->fow);
|
---|
155 | pt = pt->fow;
|
---|
156 | }
|
---|
157 |
|
---|
158 | if (pt != NULL) {
|
---|
159 | /*
|
---|
160 | * found a link. set the node type and copy in the
|
---|
161 | * name of the file it is to link to. we need to
|
---|
162 | * handle hardlinks to regular files differently than
|
---|
163 | * other links.
|
---|
164 | */
|
---|
165 | arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
|
---|
166 | sizeof(arcn->ln_name) - 1);
|
---|
167 | arcn->ln_name[arcn->ln_nlen] = '\0';
|
---|
168 | if (arcn->type == PAX_REG)
|
---|
169 | arcn->type = PAX_HRG;
|
---|
170 | else
|
---|
171 | arcn->type = PAX_HLK;
|
---|
172 |
|
---|
173 | /*
|
---|
174 | * if we have found all the links to this file, remove
|
---|
175 | * it from the database
|
---|
176 | */
|
---|
177 | if (--pt->nlink <= 1) {
|
---|
178 | *ppt = pt->fow;
|
---|
179 | (void)free((char *)pt->name);
|
---|
180 | (void)free((char *)pt);
|
---|
181 | }
|
---|
182 | return(1);
|
---|
183 | }
|
---|
184 | }
|
---|
185 |
|
---|
186 | /*
|
---|
187 | * we never saw this file before. It has links so we add it to the
|
---|
188 | * front of this hash chain
|
---|
189 | */
|
---|
190 | if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
|
---|
191 | if ((pt->name = strdup(arcn->name)) != NULL) {
|
---|
192 | pt->dev = arcn->sb.st_dev;
|
---|
193 | pt->ino = arcn->sb.st_ino;
|
---|
194 | pt->nlink = arcn->sb.st_nlink;
|
---|
195 | pt->fow = ltab[indx];
|
---|
196 | ltab[indx] = pt;
|
---|
197 | return(0);
|
---|
198 | }
|
---|
199 | (void)free((char *)pt);
|
---|
200 | }
|
---|
201 |
|
---|
202 | paxwarn(1, "Hard link table out of memory");
|
---|
203 | return(-1);
|
---|
204 | }
|
---|
205 |
|
---|
206 | /*
|
---|
207 | * purg_lnk
|
---|
208 | * remove reference for a file that we may have added to the data base as
|
---|
209 | * a potential source for hard links. We ended up not using the file, so
|
---|
210 | * we do not want to accidently point another file at it later on.
|
---|
211 | */
|
---|
212 |
|
---|
213 | void
|
---|
214 | purg_lnk(ARCHD *arcn)
|
---|
215 | {
|
---|
216 | HRDLNK *pt;
|
---|
217 | HRDLNK **ppt;
|
---|
218 | u_int indx;
|
---|
219 |
|
---|
220 | if (ltab == NULL)
|
---|
221 | return;
|
---|
222 | /*
|
---|
223 | * do not bother to look if it could not be in the database
|
---|
224 | */
|
---|
225 | if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
|
---|
226 | (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
|
---|
227 | return;
|
---|
228 |
|
---|
229 | /*
|
---|
230 | * find the hash chain for this inode value, if empty return
|
---|
231 | */
|
---|
232 | indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
|
---|
233 | if ((pt = ltab[indx]) == NULL)
|
---|
234 | return;
|
---|
235 |
|
---|
236 | /*
|
---|
237 | * walk down the list looking for the inode/dev pair, unlink and
|
---|
238 | * free if found
|
---|
239 | */
|
---|
240 | ppt = &(ltab[indx]);
|
---|
241 | while (pt != NULL) {
|
---|
242 | if ((pt->ino == arcn->sb.st_ino) &&
|
---|
243 | (pt->dev == arcn->sb.st_dev))
|
---|
244 | break;
|
---|
245 | ppt = &(pt->fow);
|
---|
246 | pt = pt->fow;
|
---|
247 | }
|
---|
248 | if (pt == NULL)
|
---|
249 | return;
|
---|
250 |
|
---|
251 | /*
|
---|
252 | * remove and free it
|
---|
253 | */
|
---|
254 | *ppt = pt->fow;
|
---|
255 | (void)free((char *)pt->name);
|
---|
256 | (void)free((char *)pt);
|
---|
257 | }
|
---|
258 |
|
---|
259 | /*
|
---|
260 | * lnk_end()
|
---|
261 | * Pull apart an existing link table so we can reuse it. We do this between
|
---|
262 | * read and write phases of append with update. (The format may have
|
---|
263 | * used the link table, and we need to start with a fresh table for the
|
---|
264 | * write phase).
|
---|
265 | */
|
---|
266 |
|
---|
267 | void
|
---|
268 | lnk_end(void)
|
---|
269 | {
|
---|
270 | int i;
|
---|
271 | HRDLNK *pt;
|
---|
272 | HRDLNK *ppt;
|
---|
273 |
|
---|
274 | if (ltab == NULL)
|
---|
275 | return;
|
---|
276 |
|
---|
277 | for (i = 0; i < L_TAB_SZ; ++i) {
|
---|
278 | if (ltab[i] == NULL)
|
---|
279 | continue;
|
---|
280 | pt = ltab[i];
|
---|
281 | ltab[i] = NULL;
|
---|
282 |
|
---|
283 | /*
|
---|
284 | * free up each entry on this chain
|
---|
285 | */
|
---|
286 | while (pt != NULL) {
|
---|
287 | ppt = pt;
|
---|
288 | pt = ppt->fow;
|
---|
289 | (void)free((char *)ppt->name);
|
---|
290 | (void)free((char *)ppt);
|
---|
291 | }
|
---|
292 | }
|
---|
293 | return;
|
---|
294 | }
|
---|
295 |
|
---|
296 | /*
|
---|
297 | * modification time table routines
|
---|
298 | *
|
---|
299 | * The modification time table keeps track of last modification times for all
|
---|
300 | * files stored in an archive during a write phase when -u is set. We only
|
---|
301 | * add a file to the archive if it is newer than a file with the same name
|
---|
302 | * already stored on the archive (if there is no other file with the same
|
---|
303 | * name on the archive it is added). This applies to writes and appends.
|
---|
304 | * An append with an -u must read the archive and store the modification time
|
---|
305 | * for every file on that archive before starting the write phase. It is clear
|
---|
306 | * that this is one HUGE database. To save memory space, the actual file names
|
---|
307 | * are stored in a scatch file and indexed by an in memory hash table. The
|
---|
308 | * hash table is indexed by hashing the file path. The nodes in the table store
|
---|
309 | * the length of the filename and the lseek offset within the scratch file
|
---|
310 | * where the actual name is stored. Since there are never any deletions to this
|
---|
311 | * table, fragmentation of the scratch file is never an issue. Lookups seem to
|
---|
312 | * not exhibit any locality at all (files in the database are rarely
|
---|
313 | * looked up more than once...). So caching is just a waste of memory. The
|
---|
314 | * only limitation is the amount of scatch file space available to store the
|
---|
315 | * path names.
|
---|
316 | */
|
---|
317 |
|
---|
318 | /*
|
---|
319 | * ftime_start()
|
---|
320 | * create the file time hash table and open for read/write the scratch
|
---|
321 | * file. (after created it is unlinked, so when we exit we leave
|
---|
322 | * no witnesses).
|
---|
323 | * Return:
|
---|
324 | * 0 if the table and file was created ok, -1 otherwise
|
---|
325 | */
|
---|
326 |
|
---|
327 | int
|
---|
328 | ftime_start(void)
|
---|
329 | {
|
---|
330 |
|
---|
331 | if (ftab != NULL)
|
---|
332 | return(0);
|
---|
333 | if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
|
---|
334 | paxwarn(1, "Cannot allocate memory for file time table");
|
---|
335 | return(-1);
|
---|
336 | }
|
---|
337 |
|
---|
338 | /*
|
---|
339 | * get random name and create temporary scratch file, unlink name
|
---|
340 | * so it will get removed on exit
|
---|
341 | */
|
---|
342 | memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
|
---|
343 | if ((ffd = mkstemp(tempfile)) < 0) {
|
---|
344 | syswarn(1, errno, "Unable to create temporary file: %s",
|
---|
345 | tempfile);
|
---|
346 | return(-1);
|
---|
347 | }
|
---|
348 | (void)unlink(tempfile);
|
---|
349 |
|
---|
350 | return(0);
|
---|
351 | }
|
---|
352 |
|
---|
353 | /*
|
---|
354 | * chk_ftime()
|
---|
355 | * looks up entry in file time hash table. If not found, the file is
|
---|
356 | * added to the hash table and the file named stored in the scratch file.
|
---|
357 | * If a file with the same name is found, the file times are compared and
|
---|
358 | * the most recent file time is retained. If the new file was younger (or
|
---|
359 | * was not in the database) the new file is selected for storage.
|
---|
360 | * Return:
|
---|
361 | * 0 if file should be added to the archive, 1 if it should be skipped,
|
---|
362 | * -1 on error
|
---|
363 | */
|
---|
364 |
|
---|
365 | int
|
---|
366 | chk_ftime(ARCHD *arcn)
|
---|
367 | {
|
---|
368 | FTM *pt;
|
---|
369 | int namelen;
|
---|
370 | u_int indx;
|
---|
371 | char ckname[PAXPATHLEN+1];
|
---|
372 |
|
---|
373 | /*
|
---|
374 | * no info, go ahead and add to archive
|
---|
375 | */
|
---|
376 | if (ftab == NULL)
|
---|
377 | return(0);
|
---|
378 |
|
---|
379 | /*
|
---|
380 | * hash the pathname and look up in table
|
---|
381 | */
|
---|
382 | namelen = arcn->nlen;
|
---|
383 | indx = st_hash(arcn->name, namelen, F_TAB_SZ);
|
---|
384 | if ((pt = ftab[indx]) != NULL) {
|
---|
385 | /*
|
---|
386 | * the hash chain is not empty, walk down looking for match
|
---|
387 | * only read up the path names if the lengths match, speeds
|
---|
388 | * up the search a lot
|
---|
389 | */
|
---|
390 | while (pt != NULL) {
|
---|
391 | if (pt->namelen == namelen) {
|
---|
392 | /*
|
---|
393 | * potential match, have to read the name
|
---|
394 | * from the scratch file.
|
---|
395 | */
|
---|
396 | if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
|
---|
397 | syswarn(1, errno,
|
---|
398 | "Failed ftime table seek");
|
---|
399 | return(-1);
|
---|
400 | }
|
---|
401 | if (read(ffd, ckname, namelen) != namelen) {
|
---|
402 | syswarn(1, errno,
|
---|
403 | "Failed ftime table read");
|
---|
404 | return(-1);
|
---|
405 | }
|
---|
406 |
|
---|
407 | /*
|
---|
408 | * if the names match, we are done
|
---|
409 | */
|
---|
410 | if (!strncmp(ckname, arcn->name, namelen))
|
---|
411 | break;
|
---|
412 | }
|
---|
413 |
|
---|
414 | /*
|
---|
415 | * try the next entry on the chain
|
---|
416 | */
|
---|
417 | pt = pt->fow;
|
---|
418 | }
|
---|
419 |
|
---|
420 | if (pt != NULL) {
|
---|
421 | /*
|
---|
422 | * found the file, compare the times, save the newer
|
---|
423 | */
|
---|
424 | if (arcn->sb.st_mtime > pt->mtime) {
|
---|
425 | /*
|
---|
426 | * file is newer
|
---|
427 | */
|
---|
428 | pt->mtime = arcn->sb.st_mtime;
|
---|
429 | return(0);
|
---|
430 | }
|
---|
431 | /*
|
---|
432 | * file is older
|
---|
433 | */
|
---|
434 | return(1);
|
---|
435 | }
|
---|
436 | }
|
---|
437 |
|
---|
438 | /*
|
---|
439 | * not in table, add it
|
---|
440 | */
|
---|
441 | if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
|
---|
442 | /*
|
---|
443 | * add the name at the end of the scratch file, saving the
|
---|
444 | * offset. add the file to the head of the hash chain
|
---|
445 | */
|
---|
446 | if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
|
---|
447 | if (write(ffd, arcn->name, namelen) == namelen) {
|
---|
448 | pt->mtime = arcn->sb.st_mtime;
|
---|
449 | pt->namelen = namelen;
|
---|
450 | pt->fow = ftab[indx];
|
---|
451 | ftab[indx] = pt;
|
---|
452 | return(0);
|
---|
453 | }
|
---|
454 | syswarn(1, errno, "Failed write to file time table");
|
---|
455 | } else
|
---|
456 | syswarn(1, errno, "Failed seek on file time table");
|
---|
457 | } else
|
---|
458 | paxwarn(1, "File time table ran out of memory");
|
---|
459 |
|
---|
460 | if (pt != NULL)
|
---|
461 | (void)free((char *)pt);
|
---|
462 | return(-1);
|
---|
463 | }
|
---|
464 |
|
---|
465 | /*
|
---|
466 | * Interactive rename table routines
|
---|
467 | *
|
---|
468 | * The interactive rename table keeps track of the new names that the user
|
---|
469 | * assigns to files from tty input. Since this map is unique for each file
|
---|
470 | * we must store it in case there is a reference to the file later in archive
|
---|
471 | * (a link). Otherwise we will be unable to find the file we know was
|
---|
472 | * extracted. The remapping of these files is stored in a memory based hash
|
---|
473 | * table (it is assumed since input must come from /dev/tty, it is unlikely to
|
---|
474 | * be a very large table).
|
---|
475 | */
|
---|
476 |
|
---|
477 | /*
|
---|
478 | * name_start()
|
---|
479 | * create the interactive rename table
|
---|
480 | * Return:
|
---|
481 | * 0 if successful, -1 otherwise
|
---|
482 | */
|
---|
483 |
|
---|
484 | int
|
---|
485 | name_start(void)
|
---|
486 | {
|
---|
487 | if (ntab != NULL)
|
---|
488 | return(0);
|
---|
489 | if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
|
---|
490 | paxwarn(1, "Cannot allocate memory for interactive rename table");
|
---|
491 | return(-1);
|
---|
492 | }
|
---|
493 | return(0);
|
---|
494 | }
|
---|
495 |
|
---|
496 | /*
|
---|
497 | * add_name()
|
---|
498 | * add the new name to old name mapping just created by the user.
|
---|
499 | * If an old name mapping is found (there may be duplicate names on an
|
---|
500 | * archive) only the most recent is kept.
|
---|
501 | * Return:
|
---|
502 | * 0 if added, -1 otherwise
|
---|
503 | */
|
---|
504 |
|
---|
505 | int
|
---|
506 | add_name(char *oname, int onamelen, char *nname)
|
---|
507 | {
|
---|
508 | NAMT *pt;
|
---|
509 | u_int indx;
|
---|
510 |
|
---|
511 | if (ntab == NULL) {
|
---|
512 | /*
|
---|
513 | * should never happen
|
---|
514 | */
|
---|
515 | paxwarn(0, "No interactive rename table, links may fail\n");
|
---|
516 | return(0);
|
---|
517 | }
|
---|
518 |
|
---|
519 | /*
|
---|
520 | * look to see if we have already mapped this file, if so we
|
---|
521 | * will update it
|
---|
522 | */
|
---|
523 | indx = st_hash(oname, onamelen, N_TAB_SZ);
|
---|
524 | if ((pt = ntab[indx]) != NULL) {
|
---|
525 | /*
|
---|
526 | * look down the has chain for the file
|
---|
527 | */
|
---|
528 | while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
|
---|
529 | pt = pt->fow;
|
---|
530 |
|
---|
531 | if (pt != NULL) {
|
---|
532 | /*
|
---|
533 | * found an old mapping, replace it with the new one
|
---|
534 | * the user just input (if it is different)
|
---|
535 | */
|
---|
536 | if (strcmp(nname, pt->nname) == 0)
|
---|
537 | return(0);
|
---|
538 |
|
---|
539 | (void)free((char *)pt->nname);
|
---|
540 | if ((pt->nname = strdup(nname)) == NULL) {
|
---|
541 | paxwarn(1, "Cannot update rename table");
|
---|
542 | return(-1);
|
---|
543 | }
|
---|
544 | return(0);
|
---|
545 | }
|
---|
546 | }
|
---|
547 |
|
---|
548 | /*
|
---|
549 | * this is a new mapping, add it to the table
|
---|
550 | */
|
---|
551 | if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
|
---|
552 | if ((pt->oname = strdup(oname)) != NULL) {
|
---|
553 | if ((pt->nname = strdup(nname)) != NULL) {
|
---|
554 | pt->fow = ntab[indx];
|
---|
555 | ntab[indx] = pt;
|
---|
556 | return(0);
|
---|
557 | }
|
---|
558 | (void)free((char *)pt->oname);
|
---|
559 | }
|
---|
560 | (void)free((char *)pt);
|
---|
561 | }
|
---|
562 | paxwarn(1, "Interactive rename table out of memory");
|
---|
563 | return(-1);
|
---|
564 | }
|
---|
565 |
|
---|
566 | /*
|
---|
567 | * sub_name()
|
---|
568 | * look up a link name to see if it points at a file that has been
|
---|
569 | * remapped by the user. If found, the link is adjusted to contain the
|
---|
570 | * new name (oname is the link to name)
|
---|
571 | */
|
---|
572 |
|
---|
573 | void
|
---|
574 | sub_name(char *oname, int *onamelen, size_t onamesize)
|
---|
575 | {
|
---|
576 | NAMT *pt;
|
---|
577 | u_int indx;
|
---|
578 |
|
---|
579 | if (ntab == NULL)
|
---|
580 | return;
|
---|
581 | /*
|
---|
582 | * look the name up in the hash table
|
---|
583 | */
|
---|
584 | indx = st_hash(oname, *onamelen, N_TAB_SZ);
|
---|
585 | if ((pt = ntab[indx]) == NULL)
|
---|
586 | return;
|
---|
587 |
|
---|
588 | while (pt != NULL) {
|
---|
589 | /*
|
---|
590 | * walk down the hash chain looking for a match
|
---|
591 | */
|
---|
592 | if (strcmp(oname, pt->oname) == 0) {
|
---|
593 | /*
|
---|
594 | * found it, replace it with the new name
|
---|
595 | * and return (we know that oname has enough space)
|
---|
596 | */
|
---|
597 | *onamelen = l_strncpy(oname, pt->nname, onamesize - 1);
|
---|
598 | oname[*onamelen] = '\0';
|
---|
599 | return;
|
---|
600 | }
|
---|
601 | pt = pt->fow;
|
---|
602 | }
|
---|
603 |
|
---|
604 | /*
|
---|
605 | * no match, just return
|
---|
606 | */
|
---|
607 | return;
|
---|
608 | }
|
---|
609 |
|
---|
610 | /*
|
---|
611 | * device/inode mapping table routines
|
---|
612 | * (used with formats that store device and inodes fields)
|
---|
613 | *
|
---|
614 | * device/inode mapping tables remap the device field in an archive header. The
|
---|
615 | * device/inode fields are used to determine when files are hard links to each
|
---|
616 | * other. However these values have very little meaning outside of that. This
|
---|
617 | * database is used to solve one of two different problems.
|
---|
618 | *
|
---|
619 | * 1) when files are appended to an archive, while the new files may have hard
|
---|
620 | * links to each other, you cannot determine if they have hard links to any
|
---|
621 | * file already stored on the archive from a prior run of pax. We must assume
|
---|
622 | * that these inode/device pairs are unique only within a SINGLE run of pax
|
---|
623 | * (which adds a set of files to an archive). So we have to make sure the
|
---|
624 | * inode/dev pairs we add each time are always unique. We do this by observing
|
---|
625 | * while the inode field is very dense, the use of the dev field is fairly
|
---|
626 | * sparse. Within each run of pax, we remap any device number of a new archive
|
---|
627 | * member that has a device number used in a prior run and already stored in a
|
---|
628 | * file on the archive. During the read phase of the append, we store the
|
---|
629 | * device numbers used and mark them to not be used by any file during the
|
---|
630 | * write phase. If during write we go to use one of those old device numbers,
|
---|
631 | * we remap it to a new value.
|
---|
632 | *
|
---|
633 | * 2) Often the fields in the archive header used to store these values are
|
---|
634 | * too small to store the entire value. The result is an inode or device value
|
---|
635 | * which can be truncated. This really can foul up an archive. With truncation
|
---|
636 | * we end up creating links between files that are really not links (after
|
---|
637 | * truncation the inodes are the same value). We address that by detecting
|
---|
638 | * truncation and forcing a remap of the device field to split truncated
|
---|
639 | * inodes away from each other. Each truncation creates a pattern of bits that
|
---|
640 | * are removed. We use this pattern of truncated bits to partition the inodes
|
---|
641 | * on a single device to many different devices (each one represented by the
|
---|
642 | * truncated bit pattern). All inodes on the same device that have the same
|
---|
643 | * truncation pattern are mapped to the same new device. Two inodes that
|
---|
644 | * truncate to the same value clearly will always have different truncation
|
---|
645 | * bit patterns, so they will be split from away each other. When we spot
|
---|
646 | * device truncation we remap the device number to a non truncated value.
|
---|
647 | * (for more info see table.h for the data structures involved).
|
---|
648 | */
|
---|
649 |
|
---|
650 | /*
|
---|
651 | * dev_start()
|
---|
652 | * create the device mapping table
|
---|
653 | * Return:
|
---|
654 | * 0 if successful, -1 otherwise
|
---|
655 | */
|
---|
656 |
|
---|
657 | int
|
---|
658 | dev_start(void)
|
---|
659 | {
|
---|
660 | if (dtab != NULL)
|
---|
661 | return(0);
|
---|
662 | if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
|
---|
663 | paxwarn(1, "Cannot allocate memory for device mapping table");
|
---|
664 | return(-1);
|
---|
665 | }
|
---|
666 | return(0);
|
---|
667 | }
|
---|
668 |
|
---|
669 | /*
|
---|
670 | * add_dev()
|
---|
671 | * add a device number to the table. this will force the device to be
|
---|
672 | * remapped to a new value if it be used during a write phase. This
|
---|
673 | * function is called during the read phase of an append to prohibit the
|
---|
674 | * use of any device number already in the archive.
|
---|
675 | * Return:
|
---|
676 | * 0 if added ok, -1 otherwise
|
---|
677 | */
|
---|
678 |
|
---|
679 | int
|
---|
680 | add_dev(ARCHD *arcn)
|
---|
681 | {
|
---|
682 | if (chk_dev(arcn->sb.st_dev, 1) == NULL)
|
---|
683 | return(-1);
|
---|
684 | return(0);
|
---|
685 | }
|
---|
686 |
|
---|
687 | /*
|
---|
688 | * chk_dev()
|
---|
689 | * check for a device value in the device table. If not found and the add
|
---|
690 | * flag is set, it is added. This does NOT assign any mapping values, just
|
---|
691 | * adds the device number as one that need to be remapped. If this device
|
---|
692 | * is already mapped, just return with a pointer to that entry.
|
---|
693 | * Return:
|
---|
694 | * pointer to the entry for this device in the device map table. Null
|
---|
695 | * if the add flag is not set and the device is not in the table (it is
|
---|
696 | * not been seen yet). If add is set and the device cannot be added, null
|
---|
697 | * is returned (indicates an error).
|
---|
698 | */
|
---|
699 |
|
---|
700 | static DEVT *
|
---|
701 | chk_dev(dev_t dev, int add)
|
---|
702 | {
|
---|
703 | DEVT *pt;
|
---|
704 | u_int indx;
|
---|
705 |
|
---|
706 | if (dtab == NULL)
|
---|
707 | return(NULL);
|
---|
708 | /*
|
---|
709 | * look to see if this device is already in the table
|
---|
710 | */
|
---|
711 | indx = ((unsigned)dev) % D_TAB_SZ;
|
---|
712 | if ((pt = dtab[indx]) != NULL) {
|
---|
713 | while ((pt != NULL) && (pt->dev != dev))
|
---|
714 | pt = pt->fow;
|
---|
715 |
|
---|
716 | /*
|
---|
717 | * found it, return a pointer to it
|
---|
718 | */
|
---|
719 | if (pt != NULL)
|
---|
720 | return(pt);
|
---|
721 | }
|
---|
722 |
|
---|
723 | /*
|
---|
724 | * not in table, we add it only if told to as this may just be a check
|
---|
725 | * to see if a device number is being used.
|
---|
726 | */
|
---|
727 | if (add == 0)
|
---|
728 | return(NULL);
|
---|
729 |
|
---|
730 | /*
|
---|
731 | * allocate a node for this device and add it to the front of the hash
|
---|
732 | * chain. Note we do not assign remaps values here, so the pt->list
|
---|
733 | * list must be NULL.
|
---|
734 | */
|
---|
735 | if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
|
---|
736 | paxwarn(1, "Device map table out of memory");
|
---|
737 | return(NULL);
|
---|
738 | }
|
---|
739 | pt->dev = dev;
|
---|
740 | pt->list = NULL;
|
---|
741 | pt->fow = dtab[indx];
|
---|
742 | dtab[indx] = pt;
|
---|
743 | return(pt);
|
---|
744 | }
|
---|
745 | /*
|
---|
746 | * map_dev()
|
---|
747 | * given an inode and device storage mask (the mask has a 1 for each bit
|
---|
748 | * the archive format is able to store in a header), we check for inode
|
---|
749 | * and device truncation and remap the device as required. Device mapping
|
---|
750 | * can also occur when during the read phase of append a device number was
|
---|
751 | * seen (and was marked as do not use during the write phase). WE ASSUME
|
---|
752 | * that unsigned longs are the same size or bigger than the fields used
|
---|
753 | * for ino_t and dev_t. If not the types will have to be changed.
|
---|
754 | * Return:
|
---|
755 | * 0 if all ok, -1 otherwise.
|
---|
756 | */
|
---|
757 |
|
---|
758 | int
|
---|
759 | map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
|
---|
760 | {
|
---|
761 | DEVT *pt;
|
---|
762 | DLIST *dpt;
|
---|
763 | static dev_t lastdev = 0; /* next device number to try */
|
---|
764 | int trc_ino = 0;
|
---|
765 | int trc_dev = 0;
|
---|
766 | ino_t trunc_bits = 0;
|
---|
767 | ino_t nino;
|
---|
768 |
|
---|
769 | if (dtab == NULL)
|
---|
770 | return(0);
|
---|
771 | /*
|
---|
772 | * check for device and inode truncation, and extract the truncated
|
---|
773 | * bit pattern.
|
---|
774 | */
|
---|
775 | if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
|
---|
776 | ++trc_dev;
|
---|
777 | if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
|
---|
778 | ++trc_ino;
|
---|
779 | trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
|
---|
780 | }
|
---|
781 |
|
---|
782 | /*
|
---|
783 | * see if this device is already being mapped, look up the device
|
---|
784 | * then find the truncation bit pattern which applies
|
---|
785 | */
|
---|
786 | if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
|
---|
787 | /*
|
---|
788 | * this device is already marked to be remapped
|
---|
789 | */
|
---|
790 | for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
|
---|
791 | if (dpt->trunc_bits == trunc_bits)
|
---|
792 | break;
|
---|
793 |
|
---|
794 | if (dpt != NULL) {
|
---|
795 | /*
|
---|
796 | * we are being remapped for this device and pattern
|
---|
797 | * change the device number to be stored and return
|
---|
798 | */
|
---|
799 | arcn->sb.st_dev = dpt->dev;
|
---|
800 | arcn->sb.st_ino = nino;
|
---|
801 | return(0);
|
---|
802 | }
|
---|
803 | } else {
|
---|
804 | /*
|
---|
805 | * this device is not being remapped YET. if we do not have any
|
---|
806 | * form of truncation, we do not need a remap
|
---|
807 | */
|
---|
808 | if (!trc_ino && !trc_dev)
|
---|
809 | return(0);
|
---|
810 |
|
---|
811 | /*
|
---|
812 | * we have truncation, have to add this as a device to remap
|
---|
813 | */
|
---|
814 | if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
|
---|
815 | goto bad;
|
---|
816 |
|
---|
817 | /*
|
---|
818 | * if we just have a truncated inode, we have to make sure that
|
---|
819 | * all future inodes that do not truncate (they have the
|
---|
820 | * truncation pattern of all 0's) continue to map to the same
|
---|
821 | * device number. We probably have already written inodes with
|
---|
822 | * this device number to the archive with the truncation
|
---|
823 | * pattern of all 0's. So we add the mapping for all 0's to the
|
---|
824 | * same device number.
|
---|
825 | */
|
---|
826 | if (!trc_dev && (trunc_bits != 0)) {
|
---|
827 | if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
|
---|
828 | goto bad;
|
---|
829 | dpt->trunc_bits = 0;
|
---|
830 | dpt->dev = arcn->sb.st_dev;
|
---|
831 | dpt->fow = pt->list;
|
---|
832 | pt->list = dpt;
|
---|
833 | }
|
---|
834 | }
|
---|
835 |
|
---|
836 | /*
|
---|
837 | * look for a device number not being used. We must watch for wrap
|
---|
838 | * around on lastdev (so we do not get stuck looking forever!)
|
---|
839 | */
|
---|
840 | while (++lastdev > 0) {
|
---|
841 | if (chk_dev(lastdev, 0) != NULL)
|
---|
842 | continue;
|
---|
843 | /*
|
---|
844 | * found an unused value. If we have reached truncation point
|
---|
845 | * for this format we are hosed, so we give up. Otherwise we
|
---|
846 | * mark it as being used.
|
---|
847 | */
|
---|
848 | if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
|
---|
849 | (chk_dev(lastdev, 1) == NULL))
|
---|
850 | goto bad;
|
---|
851 | break;
|
---|
852 | }
|
---|
853 |
|
---|
854 | if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
|
---|
855 | goto bad;
|
---|
856 |
|
---|
857 | /*
|
---|
858 | * got a new device number, store it under this truncation pattern.
|
---|
859 | * change the device number this file is being stored with.
|
---|
860 | */
|
---|
861 | dpt->trunc_bits = trunc_bits;
|
---|
862 | dpt->dev = lastdev;
|
---|
863 | dpt->fow = pt->list;
|
---|
864 | pt->list = dpt;
|
---|
865 | arcn->sb.st_dev = lastdev;
|
---|
866 | arcn->sb.st_ino = nino;
|
---|
867 | return(0);
|
---|
868 |
|
---|
869 | bad:
|
---|
870 | paxwarn(1, "Unable to fix truncated inode/device field when storing %s",
|
---|
871 | arcn->name);
|
---|
872 | paxwarn(0, "Archive may create improper hard links when extracted");
|
---|
873 | return(0);
|
---|
874 | }
|
---|
875 |
|
---|
876 | /*
|
---|
877 | * directory access/mod time reset table routines (for directories READ by pax)
|
---|
878 | *
|
---|
879 | * The pax -t flag requires that access times of archive files to be the same
|
---|
880 | * before being read by pax. For regular files, access time is restored after
|
---|
881 | * the file has been copied. This database provides the same functionality for
|
---|
882 | * directories read during file tree traversal. Restoring directory access time
|
---|
883 | * is more complex than files since directories may be read several times until
|
---|
884 | * all the descendants in their subtree are visited by fts. Directory access
|
---|
885 | * and modification times are stored during the fts pre-order visit (done
|
---|
886 | * before any descendants in the subtree is visited) and restored after the
|
---|
887 | * fts post-order visit (after all the descendants have been visited). In the
|
---|
888 | * case of premature exit from a subtree (like from the effects of -n), any
|
---|
889 | * directory entries left in this database are reset during final cleanup
|
---|
890 | * operations of pax. Entries are hashed by inode number for fast lookup.
|
---|
891 | */
|
---|
892 |
|
---|
893 | /*
|
---|
894 | * atdir_start()
|
---|
895 | * create the directory access time database for directories READ by pax.
|
---|
896 | * Return:
|
---|
897 | * 0 is created ok, -1 otherwise.
|
---|
898 | */
|
---|
899 |
|
---|
900 | int
|
---|
901 | atdir_start(void)
|
---|
902 | {
|
---|
903 | if (atab != NULL)
|
---|
904 | return(0);
|
---|
905 | if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
|
---|
906 | paxwarn(1,"Cannot allocate space for directory access time table");
|
---|
907 | return(-1);
|
---|
908 | }
|
---|
909 | return(0);
|
---|
910 | }
|
---|
911 |
|
---|
912 |
|
---|
913 | /*
|
---|
914 | * atdir_end()
|
---|
915 | * walk through the directory access time table and reset the access time
|
---|
916 | * of any directory who still has an entry left in the database. These
|
---|
917 | * entries are for directories READ by pax
|
---|
918 | */
|
---|
919 |
|
---|
920 | void
|
---|
921 | atdir_end(void)
|
---|
922 | {
|
---|
923 | ATDIR *pt;
|
---|
924 | int i;
|
---|
925 |
|
---|
926 | if (atab == NULL)
|
---|
927 | return;
|
---|
928 | /*
|
---|
929 | * for each non-empty hash table entry reset all the directories
|
---|
930 | * chained there.
|
---|
931 | */
|
---|
932 | for (i = 0; i < A_TAB_SZ; ++i) {
|
---|
933 | if ((pt = atab[i]) == NULL)
|
---|
934 | continue;
|
---|
935 | /*
|
---|
936 | * remember to force the times, set_ftime() looks at pmtime
|
---|
937 | * and patime, which only applies to things CREATED by pax,
|
---|
938 | * not read by pax. Read time reset is controlled by -t.
|
---|
939 | */
|
---|
940 | for (; pt != NULL; pt = pt->fow)
|
---|
941 | set_ftime(pt->name, pt->mtime, pt->atime, 1);
|
---|
942 | }
|
---|
943 | }
|
---|
944 |
|
---|
945 | /*
|
---|
946 | * add_atdir()
|
---|
947 | * add a directory to the directory access time table. Table is hashed
|
---|
948 | * and chained by inode number. This is for directories READ by pax
|
---|
949 | */
|
---|
950 |
|
---|
951 | void
|
---|
952 | add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
|
---|
953 | {
|
---|
954 | ATDIR *pt;
|
---|
955 | u_int indx;
|
---|
956 |
|
---|
957 | if (atab == NULL)
|
---|
958 | return;
|
---|
959 |
|
---|
960 | /*
|
---|
961 | * make sure this directory is not already in the table, if so just
|
---|
962 | * return (the older entry always has the correct time). The only
|
---|
963 | * way this will happen is when the same subtree can be traversed by
|
---|
964 | * different args to pax and the -n option is aborting fts out of a
|
---|
965 | * subtree before all the post-order visits have been made).
|
---|
966 | */
|
---|
967 | indx = ((unsigned)ino) % A_TAB_SZ;
|
---|
968 | if ((pt = atab[indx]) != NULL) {
|
---|
969 | while (pt != NULL) {
|
---|
970 | if ((pt->ino == ino) && (pt->dev == dev))
|
---|
971 | break;
|
---|
972 | pt = pt->fow;
|
---|
973 | }
|
---|
974 |
|
---|
975 | /*
|
---|
976 | * oops, already there. Leave it alone.
|
---|
977 | */
|
---|
978 | if (pt != NULL)
|
---|
979 | return;
|
---|
980 | }
|
---|
981 |
|
---|
982 | /*
|
---|
983 | * add it to the front of the hash chain
|
---|
984 | */
|
---|
985 | if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
|
---|
986 | if ((pt->name = strdup(fname)) != NULL) {
|
---|
987 | pt->dev = dev;
|
---|
988 | pt->ino = ino;
|
---|
989 | pt->mtime = mtime;
|
---|
990 | pt->atime = atime;
|
---|
991 | pt->fow = atab[indx];
|
---|
992 | atab[indx] = pt;
|
---|
993 | return;
|
---|
994 | }
|
---|
995 | (void)free((char *)pt);
|
---|
996 | }
|
---|
997 |
|
---|
998 | paxwarn(1, "Directory access time reset table ran out of memory");
|
---|
999 | return;
|
---|
1000 | }
|
---|
1001 |
|
---|
1002 | /*
|
---|
1003 | * get_atdir()
|
---|
1004 | * look up a directory by inode and device number to obtain the access
|
---|
1005 | * and modification time you want to set to. If found, the modification
|
---|
1006 | * and access time parameters are set and the entry is removed from the
|
---|
1007 | * table (as it is no longer needed). These are for directories READ by
|
---|
1008 | * pax
|
---|
1009 | * Return:
|
---|
1010 | * 0 if found, -1 if not found.
|
---|
1011 | */
|
---|
1012 |
|
---|
1013 | int
|
---|
1014 | get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
|
---|
1015 | {
|
---|
1016 | ATDIR *pt;
|
---|
1017 | ATDIR **ppt;
|
---|
1018 | u_int indx;
|
---|
1019 |
|
---|
1020 | if (atab == NULL)
|
---|
1021 | return(-1);
|
---|
1022 | /*
|
---|
1023 | * hash by inode and search the chain for an inode and device match
|
---|
1024 | */
|
---|
1025 | indx = ((unsigned)ino) % A_TAB_SZ;
|
---|
1026 | if ((pt = atab[indx]) == NULL)
|
---|
1027 | return(-1);
|
---|
1028 |
|
---|
1029 | ppt = &(atab[indx]);
|
---|
1030 | while (pt != NULL) {
|
---|
1031 | if ((pt->ino == ino) && (pt->dev == dev))
|
---|
1032 | break;
|
---|
1033 | /*
|
---|
1034 | * no match, go to next one
|
---|
1035 | */
|
---|
1036 | ppt = &(pt->fow);
|
---|
1037 | pt = pt->fow;
|
---|
1038 | }
|
---|
1039 |
|
---|
1040 | /*
|
---|
1041 | * return if we did not find it.
|
---|
1042 | */
|
---|
1043 | if (pt == NULL)
|
---|
1044 | return(-1);
|
---|
1045 |
|
---|
1046 | /*
|
---|
1047 | * found it. return the times and remove the entry from the table.
|
---|
1048 | */
|
---|
1049 | *ppt = pt->fow;
|
---|
1050 | *mtime = pt->mtime;
|
---|
1051 | *atime = pt->atime;
|
---|
1052 | (void)free((char *)pt->name);
|
---|
1053 | (void)free((char *)pt);
|
---|
1054 | return(0);
|
---|
1055 | }
|
---|
1056 |
|
---|
1057 | /*
|
---|
1058 | * directory access mode and time storage routines (for directories CREATED
|
---|
1059 | * by pax).
|
---|
1060 | *
|
---|
1061 | * Pax requires that extracted directories, by default, have their access/mod
|
---|
1062 | * times and permissions set to the values specified in the archive. During the
|
---|
1063 | * actions of extracting (and creating the destination subtree during -rw copy)
|
---|
1064 | * directories extracted may be modified after being created. Even worse is
|
---|
1065 | * that these directories may have been created with file permissions which
|
---|
1066 | * prohibits any descendants of these directories from being extracted. When
|
---|
1067 | * directories are created by pax, access rights may be added to permit the
|
---|
1068 | * creation of files in their subtree. Every time pax creates a directory, the
|
---|
1069 | * times and file permissions specified by the archive are stored. After all
|
---|
1070 | * files have been extracted (or copied), these directories have their times
|
---|
1071 | * and file modes reset to the stored values. The directory info is restored in
|
---|
1072 | * reverse order as entries were added to the data file from root to leaf. To
|
---|
1073 | * restore atime properly, we must go backwards. The data file consists of
|
---|
1074 | * records with two parts, the file name followed by a DIRDATA trailer. The
|
---|
1075 | * fixed sized trailer contains the size of the name plus the off_t location in
|
---|
1076 | * the file. To restore we work backwards through the file reading the trailer
|
---|
1077 | * then the file name.
|
---|
1078 | */
|
---|
1079 |
|
---|
1080 | /*
|
---|
1081 | * dir_start()
|
---|
1082 | * set up the directory time and file mode storage for directories CREATED
|
---|
1083 | * by pax.
|
---|
1084 | * Return:
|
---|
1085 | * 0 if ok, -1 otherwise
|
---|
1086 | */
|
---|
1087 |
|
---|
1088 | int
|
---|
1089 | dir_start(void)
|
---|
1090 | {
|
---|
1091 |
|
---|
1092 | if (dirfd != -1)
|
---|
1093 | return(0);
|
---|
1094 |
|
---|
1095 | /*
|
---|
1096 | * unlink the file so it goes away at termination by itself
|
---|
1097 | */
|
---|
1098 | memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
|
---|
1099 | if ((dirfd = mkstemp(tempfile)) >= 0) {
|
---|
1100 | (void)unlink(tempfile);
|
---|
1101 | return(0);
|
---|
1102 | }
|
---|
1103 | paxwarn(1, "Unable to create temporary file for directory times: %s",
|
---|
1104 | tempfile);
|
---|
1105 | return(-1);
|
---|
1106 | }
|
---|
1107 |
|
---|
1108 | /*
|
---|
1109 | * add_dir()
|
---|
1110 | * add the mode and times for a newly CREATED directory
|
---|
1111 | * name is name of the directory, psb the stat buffer with the data in it,
|
---|
1112 | * frc_mode is a flag that says whether to force the setting of the mode
|
---|
1113 | * (ignoring the user set values for preserving file mode). Frc_mode is
|
---|
1114 | * for the case where we created a file and found that the resulting
|
---|
1115 | * directory was not writeable and the user asked for file modes to NOT
|
---|
1116 | * be preserved. (we have to preserve what was created by default, so we
|
---|
1117 | * have to force the setting at the end. this is stated explicitly in the
|
---|
1118 | * pax spec)
|
---|
1119 | */
|
---|
1120 |
|
---|
1121 | void
|
---|
1122 | add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
|
---|
1123 | {
|
---|
1124 | DIRDATA dblk;
|
---|
1125 |
|
---|
1126 | if (dirfd < 0)
|
---|
1127 | return;
|
---|
1128 |
|
---|
1129 | /*
|
---|
1130 | * get current position (where file name will start) so we can store it
|
---|
1131 | * in the trailer
|
---|
1132 | */
|
---|
1133 | if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
|
---|
1134 | paxwarn(1,"Unable to store mode and times for directory: %s",name);
|
---|
1135 | return;
|
---|
1136 | }
|
---|
1137 |
|
---|
1138 | /*
|
---|
1139 | * write the file name followed by the trailer
|
---|
1140 | */
|
---|
1141 | dblk.nlen = nlen + 1;
|
---|
1142 | dblk.mode = psb->st_mode & 0xffff;
|
---|
1143 | dblk.mtime = psb->st_mtime;
|
---|
1144 | dblk.atime = psb->st_atime;
|
---|
1145 | dblk.frc_mode = frc_mode;
|
---|
1146 | if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
|
---|
1147 | (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
|
---|
1148 | ++dircnt;
|
---|
1149 | return;
|
---|
1150 | }
|
---|
1151 |
|
---|
1152 | paxwarn(1,"Unable to store mode and times for created directory: %s",name);
|
---|
1153 | return;
|
---|
1154 | }
|
---|
1155 |
|
---|
1156 | /*
|
---|
1157 | * proc_dir()
|
---|
1158 | * process all file modes and times stored for directories CREATED
|
---|
1159 | * by pax
|
---|
1160 | */
|
---|
1161 |
|
---|
1162 | void
|
---|
1163 | proc_dir(void)
|
---|
1164 | {
|
---|
1165 | char name[PAXPATHLEN+1];
|
---|
1166 | DIRDATA dblk;
|
---|
1167 | u_long cnt;
|
---|
1168 |
|
---|
1169 | if (dirfd < 0)
|
---|
1170 | return;
|
---|
1171 | /*
|
---|
1172 | * read backwards through the file and process each directory
|
---|
1173 | */
|
---|
1174 | for (cnt = 0; cnt < dircnt; ++cnt) {
|
---|
1175 | /*
|
---|
1176 | * read the trailer, then the file name, if this fails
|
---|
1177 | * just give up.
|
---|
1178 | */
|
---|
1179 | if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
|
---|
1180 | break;
|
---|
1181 | if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
|
---|
1182 | break;
|
---|
1183 | if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
|
---|
1184 | break;
|
---|
1185 | if (read(dirfd, name, dblk.nlen) != dblk.nlen)
|
---|
1186 | break;
|
---|
1187 | if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
|
---|
1188 | break;
|
---|
1189 |
|
---|
1190 | /*
|
---|
1191 | * frc_mode set, make sure we set the file modes even if
|
---|
1192 | * the user didn't ask for it (see file_subs.c for more info)
|
---|
1193 | */
|
---|
1194 | if (pmode || dblk.frc_mode)
|
---|
1195 | set_pmode(name, dblk.mode);
|
---|
1196 | if (patime || pmtime)
|
---|
1197 | set_ftime(name, dblk.mtime, dblk.atime, 0);
|
---|
1198 | }
|
---|
1199 |
|
---|
1200 | (void)close(dirfd);
|
---|
1201 | dirfd = -1;
|
---|
1202 | if (cnt != dircnt)
|
---|
1203 | paxwarn(1,"Unable to set mode and times for created directories");
|
---|
1204 | return;
|
---|
1205 | }
|
---|
1206 |
|
---|
1207 | /*
|
---|
1208 | * database independent routines
|
---|
1209 | */
|
---|
1210 |
|
---|
1211 | /*
|
---|
1212 | * st_hash()
|
---|
1213 | * hashes filenames to a u_int for hashing into a table. Looks at the tail
|
---|
1214 | * end of file, as this provides far better distribution than any other
|
---|
1215 | * part of the name. For performance reasons we only care about the last
|
---|
1216 | * MAXKEYLEN chars (should be at LEAST large enough to pick off the file
|
---|
1217 | * name). Was tested on 500,000 name file tree traversal from the root
|
---|
1218 | * and gave almost a perfectly uniform distribution of keys when used with
|
---|
1219 | * prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
|
---|
1220 | * chars at a time and pads with 0 for last addition.
|
---|
1221 | * Return:
|
---|
1222 | * the hash value of the string MOD (%) the table size.
|
---|
1223 | */
|
---|
1224 |
|
---|
1225 | u_int
|
---|
1226 | st_hash(char *name, int len, int tabsz)
|
---|
1227 | {
|
---|
1228 | char *pt;
|
---|
1229 | char *dest;
|
---|
1230 | char *end;
|
---|
1231 | int i;
|
---|
1232 | u_int key = 0;
|
---|
1233 | int steps;
|
---|
1234 | int res;
|
---|
1235 | u_int val;
|
---|
1236 |
|
---|
1237 | /*
|
---|
1238 | * only look at the tail up to MAXKEYLEN, we do not need to waste
|
---|
1239 | * time here (remember these are pathnames, the tail is what will
|
---|
1240 | * spread out the keys)
|
---|
1241 | */
|
---|
1242 | if (len > MAXKEYLEN) {
|
---|
1243 | pt = &(name[len - MAXKEYLEN]);
|
---|
1244 | len = MAXKEYLEN;
|
---|
1245 | } else
|
---|
1246 | pt = name;
|
---|
1247 |
|
---|
1248 | /*
|
---|
1249 | * calculate the number of u_int size steps in the string and if
|
---|
1250 | * there is a runt to deal with
|
---|
1251 | */
|
---|
1252 | steps = len/sizeof(u_int);
|
---|
1253 | res = len % sizeof(u_int);
|
---|
1254 |
|
---|
1255 | /*
|
---|
1256 | * add up the value of the string in unsigned integer sized pieces
|
---|
1257 | * too bad we cannot have unsigned int aligned strings, then we
|
---|
1258 | * could avoid the expensive copy.
|
---|
1259 | */
|
---|
1260 | for (i = 0; i < steps; ++i) {
|
---|
1261 | end = pt + sizeof(u_int);
|
---|
1262 | dest = (char *)&val;
|
---|
1263 | while (pt < end)
|
---|
1264 | *dest++ = *pt++;
|
---|
1265 | key += val;
|
---|
1266 | }
|
---|
1267 |
|
---|
1268 | /*
|
---|
1269 | * add in the runt padded with zero to the right
|
---|
1270 | */
|
---|
1271 | if (res) {
|
---|
1272 | val = 0;
|
---|
1273 | end = pt + res;
|
---|
1274 | dest = (char *)&val;
|
---|
1275 | while (pt < end)
|
---|
1276 | *dest++ = *pt++;
|
---|
1277 | key += val;
|
---|
1278 | }
|
---|
1279 |
|
---|
1280 | /*
|
---|
1281 | * return the result mod the table size
|
---|
1282 | */
|
---|
1283 | return(key % tabsz);
|
---|
1284 | }
|
---|