1 | /* rijndael-api.c - Rijndael encryption programming interface.
|
---|
2 | * Author: Kees J. Bot
|
---|
3 | * 3 Nov 2000
|
---|
4 | * Heavily based on the original API code by Antoon Bosselaers,
|
---|
5 | * Vincent Rijmen, and Paulo Barreto, but with a different interface.
|
---|
6 | *
|
---|
7 | * Read this code top to bottom, not all comments are repeated.
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include <stdlib.h>
|
---|
11 | #include <string.h>
|
---|
12 | #include <sys/types.h>
|
---|
13 |
|
---|
14 | #include "rijndael-alg.h"
|
---|
15 | #include "rijndael-api.h"
|
---|
16 |
|
---|
17 | /* Map a byte (?) address to a word address or vv. */
|
---|
18 | #define W(a) ((word32 *) (a))
|
---|
19 | #define B(a) ((word8 *) (a))
|
---|
20 |
|
---|
21 | #if STRICT_ALIGN
|
---|
22 | /* This machine checks alignment religiously. (The code is not proper with
|
---|
23 | * respect to alignment. We need a compiler that doesn't muck about with byte
|
---|
24 | * arrays that follow words in structs, and that places automatic variables
|
---|
25 | * at word boundaries if not odd-sized. Most compilers are this nice.)
|
---|
26 | */
|
---|
27 |
|
---|
28 | #define aligned(a) (((unsigned) (a) & 3) == 0)
|
---|
29 | #define aligned2(a1, a2) aligned((unsigned) (a1) | (unsigned) (a2))
|
---|
30 |
|
---|
31 | static void blockcpy(void *dst, const void *src)
|
---|
32 | {
|
---|
33 | int i= 0;
|
---|
34 |
|
---|
35 | do {
|
---|
36 | B(dst)[i+0] = B(src)[i+0];
|
---|
37 | B(dst)[i+1] = B(src)[i+1];
|
---|
38 | B(dst)[i+2] = B(src)[i+2];
|
---|
39 | B(dst)[i+3] = B(src)[i+3];
|
---|
40 | } while ((i += 4) < 16);
|
---|
41 | }
|
---|
42 |
|
---|
43 | #else /* !STRICT_ALIGN */
|
---|
44 | /* This machine doesn't mind misaligned accesses much. */
|
---|
45 |
|
---|
46 | #define aligned(a) ((void) (a), 1)
|
---|
47 | #define aligned2(a1, a2) ((void) (a1), (void) (a2), 1)
|
---|
48 |
|
---|
49 | #if __GNUC__
|
---|
50 | __inline
|
---|
51 | #endif
|
---|
52 | static void blockcpy(void *dst, const void *src)
|
---|
53 | {
|
---|
54 | W(dst)[0] = W(src)[0];
|
---|
55 | W(dst)[1] = W(src)[1];
|
---|
56 | W(dst)[2] = W(src)[2];
|
---|
57 | W(dst)[3] = W(src)[3];
|
---|
58 | }
|
---|
59 |
|
---|
60 | #endif /* !STRICT_ALIGN */
|
---|
61 |
|
---|
62 | #define between(a, c, z) ((unsigned) (c) - (a) <= (unsigned) (z) - (a))
|
---|
63 |
|
---|
64 | int rijndael_makekey(rd_keyinstance *key,
|
---|
65 | size_t keylen, const void *keymaterial)
|
---|
66 | {
|
---|
67 | word8 k[MAXKC][4];
|
---|
68 |
|
---|
69 | /* Initialize key schedule: */
|
---|
70 | if (keylen == RD_KEY_HEX) {
|
---|
71 | const word8 *kp;
|
---|
72 | int c, b;
|
---|
73 |
|
---|
74 | kp= keymaterial;
|
---|
75 | keylen= 0;
|
---|
76 |
|
---|
77 | for (;;) {
|
---|
78 | c= *kp++;
|
---|
79 | if (between('0', c, '9')) b= (c - '0' + 0x0) << 4;
|
---|
80 | else
|
---|
81 | if (between('a', c, 'f')) b= (c - 'a' + 0xa) << 4;
|
---|
82 | else
|
---|
83 | if (between('A', c, 'F')) b= (c - 'A' + 0xA) << 4;
|
---|
84 | else break;
|
---|
85 |
|
---|
86 | c= *kp++;
|
---|
87 | if (between('0', c, '9')) b |= (c - '0' + 0x0);
|
---|
88 | else
|
---|
89 | if (between('a', c, 'f')) b |= (c - 'a' + 0xa);
|
---|
90 | else
|
---|
91 | if (between('A', c, 'F')) b |= (c - 'A' + 0xA);
|
---|
92 | else break;
|
---|
93 |
|
---|
94 | if (keylen >= 256/8) return RD_BAD_KEY_MAT;
|
---|
95 | B(k)[keylen++] = b;
|
---|
96 | }
|
---|
97 | if (c != 0) return RD_BAD_KEY_MAT;
|
---|
98 |
|
---|
99 | if (keylen != 128/8 && keylen != 192/8 && keylen != 256/8) {
|
---|
100 | return RD_BAD_KEY_MAT;
|
---|
101 | }
|
---|
102 | } else {
|
---|
103 | if (keylen != 128/8 && keylen != 192/8 && keylen != 256/8) {
|
---|
104 | return RD_BAD_KEY_MAT;
|
---|
105 | }
|
---|
106 | memcpy(k, keymaterial, keylen);
|
---|
107 | }
|
---|
108 |
|
---|
109 | key->rounds= keylen * 8 / 32 + 6;
|
---|
110 |
|
---|
111 | rijndael_KeySched(k, key->encsched, key->rounds);
|
---|
112 | memcpy(key->decsched, key->encsched, sizeof(key->decsched));
|
---|
113 | rijndael_KeyEncToDec(key->decsched, key->rounds);
|
---|
114 |
|
---|
115 | return 0;
|
---|
116 | }
|
---|
117 |
|
---|
118 | ssize_t rijndael_ecb_encrypt(rd_keyinstance *key,
|
---|
119 | const void *input, void *output, size_t length, void *dummyIV)
|
---|
120 | {
|
---|
121 | /* Encrypt blocks of data in Electronic Codebook mode. */
|
---|
122 | const word8 *inp= input;
|
---|
123 | word8 *outp= output;
|
---|
124 | size_t i, nr_blocks, extra;
|
---|
125 | word32 in[4], out[4];
|
---|
126 | word8 t;
|
---|
127 |
|
---|
128 | /* Compute the number of whole blocks, and the extra bytes beyond the
|
---|
129 | * last block. Those extra bytes, if any, are encrypted by stealing
|
---|
130 | * enough bytes from the previous encrypted block to make a whole block.
|
---|
131 | * This is done by encrypting the last block, exchanging the first few
|
---|
132 | * encrypted bytes with the extra bytes, and encrypting the last whole
|
---|
133 | * block again.
|
---|
134 | */
|
---|
135 | nr_blocks= length / 16;
|
---|
136 | if ((extra= (length % 16)) > 0) {
|
---|
137 | if (nr_blocks == 0) return RD_BAD_BLOCK_LENGTH;
|
---|
138 | nr_blocks--;
|
---|
139 | }
|
---|
140 |
|
---|
141 | /* Encrypt a number of blocks. */
|
---|
142 | if (aligned2(inp, outp)) {
|
---|
143 | for (i= 0; i < nr_blocks; i++) {
|
---|
144 | rijndael_Encrypt(inp, outp, key->encsched, key->rounds);
|
---|
145 | inp += 16;
|
---|
146 | outp += 16;
|
---|
147 | }
|
---|
148 | } else {
|
---|
149 | for (i= 0; i < nr_blocks; i++) {
|
---|
150 | blockcpy(in, inp);
|
---|
151 | rijndael_Encrypt(in, out, key->encsched, key->rounds);
|
---|
152 | blockcpy(outp, out);
|
---|
153 | inp += 16;
|
---|
154 | outp += 16;
|
---|
155 | }
|
---|
156 | }
|
---|
157 |
|
---|
158 | /* Encrypt extra bytes by stealing from the last full block. */
|
---|
159 | if (extra > 0) {
|
---|
160 | blockcpy(in, inp);
|
---|
161 | rijndael_Encrypt(in, out, key->encsched, key->rounds);
|
---|
162 | for (i= 0; i < extra; i++) {
|
---|
163 | t= B(out)[i];
|
---|
164 | B(out)[i] = inp[16 + i];
|
---|
165 | outp[16 + i] = t;
|
---|
166 | }
|
---|
167 | rijndael_Encrypt(out, out, key->encsched, key->rounds);
|
---|
168 | blockcpy(outp, out);
|
---|
169 | }
|
---|
170 | return length;
|
---|
171 | }
|
---|
172 |
|
---|
173 | ssize_t rijndael_ecb_decrypt(rd_keyinstance *key,
|
---|
174 | const void *input, void *output, size_t length, void *dummyIV)
|
---|
175 | {
|
---|
176 | /* Decrypt blocks of data in Electronic Codebook mode. */
|
---|
177 | const word8 *inp= input;
|
---|
178 | word8 *outp= output;
|
---|
179 | size_t i, nr_blocks, extra;
|
---|
180 | word32 in[4], out[4];
|
---|
181 | word8 t;
|
---|
182 |
|
---|
183 | nr_blocks= length / 16;
|
---|
184 | if ((extra= (length % 16)) > 0) {
|
---|
185 | if (nr_blocks == 0) return RD_BAD_BLOCK_LENGTH;
|
---|
186 | nr_blocks--;
|
---|
187 | }
|
---|
188 |
|
---|
189 | /* Decrypt a number of blocks. */
|
---|
190 | if (aligned2(inp, outp)) {
|
---|
191 | for (i= 0; i < nr_blocks; i++) {
|
---|
192 | rijndael_Decrypt(inp, outp, key->decsched, key->rounds);
|
---|
193 | inp += 16;
|
---|
194 | outp += 16;
|
---|
195 | }
|
---|
196 | } else {
|
---|
197 | for (i= 0; i < nr_blocks; i++) {
|
---|
198 | blockcpy(in, inp);
|
---|
199 | rijndael_Decrypt(in, out, key->decsched, key->rounds);
|
---|
200 | blockcpy(outp, out);
|
---|
201 | inp += 16;
|
---|
202 | outp += 16;
|
---|
203 | }
|
---|
204 | }
|
---|
205 |
|
---|
206 | /* Decrypt extra bytes that stole from the last full block. */
|
---|
207 | if (extra > 0) {
|
---|
208 | blockcpy(in, inp);
|
---|
209 | rijndael_Decrypt(in, out, key->decsched, key->rounds);
|
---|
210 | for (i= 0; i < extra; i++) {
|
---|
211 | t= B(out)[i];
|
---|
212 | B(out)[i] = inp[16 + i];
|
---|
213 | outp[16 + i] = t;
|
---|
214 | }
|
---|
215 | rijndael_Decrypt(out, out, key->decsched, key->rounds);
|
---|
216 | blockcpy(outp, out);
|
---|
217 | }
|
---|
218 | return length;
|
---|
219 | }
|
---|
220 |
|
---|
221 | ssize_t rijndael_cbc_encrypt(rd_keyinstance *key,
|
---|
222 | const void *input, void *output, size_t length, void *IV)
|
---|
223 | {
|
---|
224 | /* Encrypt blocks of data in Cypher Block Chaining mode. */
|
---|
225 | const word8 *inp= input;
|
---|
226 | word8 *outp= output;
|
---|
227 | size_t i, nr_blocks, extra;
|
---|
228 | word32 in[4], out[4], iv[4], *ivp;
|
---|
229 | word8 t;
|
---|
230 |
|
---|
231 | nr_blocks= length / 16;
|
---|
232 | if ((extra= (length % 16)) > 0) {
|
---|
233 | if (nr_blocks == 0) return RD_BAD_BLOCK_LENGTH;
|
---|
234 | nr_blocks--;
|
---|
235 | }
|
---|
236 |
|
---|
237 | /* Each input block is first XORed with the previous encryption result.
|
---|
238 | * The "Initialization Vector" is used to XOR the first block with.
|
---|
239 | * When done the last crypted block is stored back as the new IV to be
|
---|
240 | * used for another call to this function.
|
---|
241 | */
|
---|
242 | ivp= aligned(IV) ? IV : (blockcpy(iv, IV), iv);
|
---|
243 |
|
---|
244 | if (aligned2(inp, outp)) {
|
---|
245 | for (i= 0; i < nr_blocks; i++) {
|
---|
246 | in[0] = W(inp)[0] ^ ivp[0];
|
---|
247 | in[1] = W(inp)[1] ^ ivp[1];
|
---|
248 | in[2] = W(inp)[2] ^ ivp[2];
|
---|
249 | in[3] = W(inp)[3] ^ ivp[3];
|
---|
250 | rijndael_Encrypt(in, outp, key->encsched, key->rounds);
|
---|
251 | ivp= W(outp);
|
---|
252 | inp += 16;
|
---|
253 | outp += 16;
|
---|
254 | }
|
---|
255 | } else {
|
---|
256 | for (i= 0; i < nr_blocks; i++) {
|
---|
257 | blockcpy(in, inp);
|
---|
258 | in[0] ^= ivp[0];
|
---|
259 | in[1] ^= ivp[1];
|
---|
260 | in[2] ^= ivp[2];
|
---|
261 | in[3] ^= ivp[3];
|
---|
262 | rijndael_Encrypt(in, out, key->encsched, key->rounds);
|
---|
263 | blockcpy(outp, out);
|
---|
264 | ivp= out;
|
---|
265 | inp += 16;
|
---|
266 | outp += 16;
|
---|
267 | }
|
---|
268 | }
|
---|
269 | if (extra > 0) {
|
---|
270 | blockcpy(in, inp);
|
---|
271 | in[0] ^= ivp[0];
|
---|
272 | in[1] ^= ivp[1];
|
---|
273 | in[2] ^= ivp[2];
|
---|
274 | in[3] ^= ivp[3];
|
---|
275 | rijndael_Encrypt(in, out, key->encsched, key->rounds);
|
---|
276 | for (i= 0; i < extra; i++) {
|
---|
277 | t= B(out)[i];
|
---|
278 | B(out)[i] ^= inp[16 + i];
|
---|
279 | outp[16 + i] = t;
|
---|
280 | }
|
---|
281 | rijndael_Encrypt(out, out, key->encsched, key->rounds);
|
---|
282 | blockcpy(outp, out);
|
---|
283 | ivp= out;
|
---|
284 | }
|
---|
285 | blockcpy(IV, ivp); /* Store last IV back. */
|
---|
286 | return length;
|
---|
287 | }
|
---|
288 |
|
---|
289 | ssize_t rijndael_cbc_decrypt(rd_keyinstance *key,
|
---|
290 | const void *input, void *output, size_t length, void *IV)
|
---|
291 | {
|
---|
292 | /* Decrypt blocks of data in Cypher Block Chaining mode. */
|
---|
293 | const word8 *inp= input;
|
---|
294 | word8 *outp= output;
|
---|
295 | size_t i, nr_blocks, extra;
|
---|
296 | word32 in[4], out[4], iv[4];
|
---|
297 | word8 t;
|
---|
298 |
|
---|
299 | nr_blocks= length / 16;
|
---|
300 | if ((extra= (length % 16)) > 0) {
|
---|
301 | if (nr_blocks == 0) return RD_BAD_BLOCK_LENGTH;
|
---|
302 | nr_blocks--;
|
---|
303 | }
|
---|
304 |
|
---|
305 | blockcpy(iv, IV);
|
---|
306 |
|
---|
307 | if (aligned2(inp, outp)) {
|
---|
308 | for (i= 0; i < nr_blocks; i++) {
|
---|
309 | rijndael_Decrypt(inp, out, key->decsched, key->rounds);
|
---|
310 | out[0] ^= iv[0];
|
---|
311 | out[1] ^= iv[1];
|
---|
312 | out[2] ^= iv[2];
|
---|
313 | out[3] ^= iv[3];
|
---|
314 | iv[0] = W(inp)[0];
|
---|
315 | iv[1] = W(inp)[1];
|
---|
316 | iv[2] = W(inp)[2];
|
---|
317 | iv[3] = W(inp)[3];
|
---|
318 | W(outp)[0] = out[0];
|
---|
319 | W(outp)[1] = out[1];
|
---|
320 | W(outp)[2] = out[2];
|
---|
321 | W(outp)[3] = out[3];
|
---|
322 | inp += 16;
|
---|
323 | outp += 16;
|
---|
324 | }
|
---|
325 | } else {
|
---|
326 | for (i= 0; i < nr_blocks; i++) {
|
---|
327 | blockcpy(in, inp);
|
---|
328 | rijndael_Decrypt(in, out, key->decsched, key->rounds);
|
---|
329 | out[0] ^= iv[0];
|
---|
330 | out[1] ^= iv[1];
|
---|
331 | out[2] ^= iv[2];
|
---|
332 | out[3] ^= iv[3];
|
---|
333 | iv[0] = in[0];
|
---|
334 | iv[1] = in[1];
|
---|
335 | iv[2] = in[2];
|
---|
336 | iv[3] = in[3];
|
---|
337 | blockcpy(outp, out);
|
---|
338 | inp += 16;
|
---|
339 | outp += 16;
|
---|
340 | }
|
---|
341 | }
|
---|
342 | if (extra > 0) {
|
---|
343 | blockcpy(in, inp);
|
---|
344 | blockcpy(IV, in);
|
---|
345 | rijndael_Decrypt(in, out, key->decsched, key->rounds);
|
---|
346 | for (i= 0; i < extra; i++) {
|
---|
347 | t= B(out)[i] ^ inp[16 + i];
|
---|
348 | B(out)[i] = inp[16 + i];
|
---|
349 | outp[16 + i] = t;
|
---|
350 | }
|
---|
351 | rijndael_Decrypt(out, out, key->decsched, key->rounds);
|
---|
352 | out[0] ^= iv[0];
|
---|
353 | out[1] ^= iv[1];
|
---|
354 | out[2] ^= iv[2];
|
---|
355 | out[3] ^= iv[3];
|
---|
356 | blockcpy(outp, out);
|
---|
357 | } else {
|
---|
358 | blockcpy(IV, iv);
|
---|
359 | }
|
---|
360 | return length;
|
---|
361 | }
|
---|
362 |
|
---|
363 | ssize_t rijndael_cfb1_encrypt(rd_keyinstance *key,
|
---|
364 | const void *input, void *output, size_t length, void *IV)
|
---|
365 | {
|
---|
366 | /* Encrypt blocks of data in Cypher Feedback mode, 1 bit at a time. */
|
---|
367 | const word8 *inp= input;
|
---|
368 | word8 *outp= output;
|
---|
369 | word8 t;
|
---|
370 | size_t i;
|
---|
371 | int b;
|
---|
372 | word32 iv[4], civ[4];
|
---|
373 |
|
---|
374 | blockcpy(iv, IV);
|
---|
375 |
|
---|
376 | for (i= 0; i < length; i++) {
|
---|
377 | t= *inp++;
|
---|
378 | for (b= 0; b < 8; b++) {
|
---|
379 | rijndael_Encrypt(iv, civ, key->encsched, key->rounds);
|
---|
380 | t ^= (B(civ)[0] & 0x80) >> b;
|
---|
381 | B(iv)[ 0] = (B(iv)[ 0] << 1) | (B(iv)[ 1] >> 7);
|
---|
382 | B(iv)[ 1] = (B(iv)[ 1] << 1) | (B(iv)[ 2] >> 7);
|
---|
383 | B(iv)[ 2] = (B(iv)[ 2] << 1) | (B(iv)[ 3] >> 7);
|
---|
384 | B(iv)[ 3] = (B(iv)[ 3] << 1) | (B(iv)[ 4] >> 7);
|
---|
385 | B(iv)[ 4] = (B(iv)[ 4] << 1) | (B(iv)[ 5] >> 7);
|
---|
386 | B(iv)[ 5] = (B(iv)[ 5] << 1) | (B(iv)[ 6] >> 7);
|
---|
387 | B(iv)[ 6] = (B(iv)[ 6] << 1) | (B(iv)[ 7] >> 7);
|
---|
388 | B(iv)[ 7] = (B(iv)[ 7] << 1) | (B(iv)[ 8] >> 7);
|
---|
389 | B(iv)[ 8] = (B(iv)[ 8] << 1) | (B(iv)[ 9] >> 7);
|
---|
390 | B(iv)[ 9] = (B(iv)[ 9] << 1) | (B(iv)[10] >> 7);
|
---|
391 | B(iv)[10] = (B(iv)[10] << 1) | (B(iv)[11] >> 7);
|
---|
392 | B(iv)[11] = (B(iv)[11] << 1) | (B(iv)[12] >> 7);
|
---|
393 | B(iv)[12] = (B(iv)[12] << 1) | (B(iv)[13] >> 7);
|
---|
394 | B(iv)[13] = (B(iv)[13] << 1) | (B(iv)[14] >> 7);
|
---|
395 | B(iv)[14] = (B(iv)[14] << 1) | (B(iv)[15] >> 7);
|
---|
396 | B(iv)[15] = (B(iv)[15] << 1) | ((t >> (7-b)) & 1);
|
---|
397 | }
|
---|
398 | *outp++ = t;
|
---|
399 | }
|
---|
400 | blockcpy(IV, iv);
|
---|
401 | return length;
|
---|
402 | }
|
---|
403 |
|
---|
404 | ssize_t rijndael_cfb1_decrypt(rd_keyinstance *key,
|
---|
405 | const void *input, void *output, size_t length, void *IV)
|
---|
406 | {
|
---|
407 | /* Decrypt blocks of data in Cypher Feedback mode, 1 bit at a time. */
|
---|
408 | const word8 *inp= input;
|
---|
409 | word8 *outp= output;
|
---|
410 | word8 t;
|
---|
411 | size_t i;
|
---|
412 | int b;
|
---|
413 | word32 iv[4], civ[4];
|
---|
414 |
|
---|
415 | blockcpy(iv, IV);
|
---|
416 |
|
---|
417 | for (i= 0; i < length; i++) {
|
---|
418 | t= *inp++;
|
---|
419 | for (b= 0; b < 8; b++) {
|
---|
420 | rijndael_Encrypt(iv, civ, key->encsched, key->rounds);
|
---|
421 | B(iv)[ 0] = (B(iv)[ 0] << 1) | (B(iv)[ 1] >> 7);
|
---|
422 | B(iv)[ 1] = (B(iv)[ 1] << 1) | (B(iv)[ 2] >> 7);
|
---|
423 | B(iv)[ 2] = (B(iv)[ 2] << 1) | (B(iv)[ 3] >> 7);
|
---|
424 | B(iv)[ 3] = (B(iv)[ 3] << 1) | (B(iv)[ 4] >> 7);
|
---|
425 | B(iv)[ 4] = (B(iv)[ 4] << 1) | (B(iv)[ 5] >> 7);
|
---|
426 | B(iv)[ 5] = (B(iv)[ 5] << 1) | (B(iv)[ 6] >> 7);
|
---|
427 | B(iv)[ 6] = (B(iv)[ 6] << 1) | (B(iv)[ 7] >> 7);
|
---|
428 | B(iv)[ 7] = (B(iv)[ 7] << 1) | (B(iv)[ 8] >> 7);
|
---|
429 | B(iv)[ 8] = (B(iv)[ 8] << 1) | (B(iv)[ 9] >> 7);
|
---|
430 | B(iv)[ 9] = (B(iv)[ 9] << 1) | (B(iv)[10] >> 7);
|
---|
431 | B(iv)[10] = (B(iv)[10] << 1) | (B(iv)[11] >> 7);
|
---|
432 | B(iv)[11] = (B(iv)[11] << 1) | (B(iv)[12] >> 7);
|
---|
433 | B(iv)[12] = (B(iv)[12] << 1) | (B(iv)[13] >> 7);
|
---|
434 | B(iv)[13] = (B(iv)[13] << 1) | (B(iv)[14] >> 7);
|
---|
435 | B(iv)[14] = (B(iv)[14] << 1) | (B(iv)[15] >> 7);
|
---|
436 | B(iv)[15] = (B(iv)[15] << 1) | ((t >> (7-b)) & 1);
|
---|
437 | t ^= (B(civ)[0] & 0x80) >> b;
|
---|
438 | }
|
---|
439 | *outp++ = t;
|
---|
440 | }
|
---|
441 | blockcpy(IV, iv);
|
---|
442 | return length;
|
---|
443 | }
|
---|
444 |
|
---|
445 | ssize_t rijndael_cfb8_encrypt(rd_keyinstance *key,
|
---|
446 | const void *input, void *output, size_t length, void *IV)
|
---|
447 | {
|
---|
448 | /* Encrypt blocks of data in Cypher Feedback mode, 8 bits at a time. */
|
---|
449 | const word8 *inp= input;
|
---|
450 | word8 *outp= output;
|
---|
451 | word8 t;
|
---|
452 | size_t i;
|
---|
453 | word32 iv[4], civ[4];
|
---|
454 |
|
---|
455 | blockcpy(iv, IV);
|
---|
456 |
|
---|
457 | for (i= 0; i < length; i++) {
|
---|
458 | t= *inp++;
|
---|
459 | rijndael_Encrypt(iv, civ, key->encsched, key->rounds);
|
---|
460 | t ^= B(civ)[0];
|
---|
461 | B(iv)[ 0] = B(iv)[ 1];
|
---|
462 | B(iv)[ 1] = B(iv)[ 2];
|
---|
463 | B(iv)[ 2] = B(iv)[ 3];
|
---|
464 | B(iv)[ 3] = B(iv)[ 4];
|
---|
465 | B(iv)[ 4] = B(iv)[ 5];
|
---|
466 | B(iv)[ 5] = B(iv)[ 6];
|
---|
467 | B(iv)[ 6] = B(iv)[ 7];
|
---|
468 | B(iv)[ 7] = B(iv)[ 8];
|
---|
469 | B(iv)[ 8] = B(iv)[ 9];
|
---|
470 | B(iv)[ 9] = B(iv)[10];
|
---|
471 | B(iv)[10] = B(iv)[11];
|
---|
472 | B(iv)[11] = B(iv)[12];
|
---|
473 | B(iv)[12] = B(iv)[13];
|
---|
474 | B(iv)[13] = B(iv)[14];
|
---|
475 | B(iv)[14] = B(iv)[15];
|
---|
476 | B(iv)[15] = t;
|
---|
477 | *outp++ = t;
|
---|
478 | }
|
---|
479 | blockcpy(IV, iv);
|
---|
480 | return length;
|
---|
481 | }
|
---|
482 |
|
---|
483 | ssize_t rijndael_cfb8_decrypt(rd_keyinstance *key,
|
---|
484 | const void *input, void *output, size_t length, void *IV)
|
---|
485 | {
|
---|
486 | /* Decrypt blocks of data in Cypher Feedback mode, 1 byte at a time. */
|
---|
487 | const word8 *inp= input;
|
---|
488 | word8 *outp= output;
|
---|
489 | word8 t;
|
---|
490 | size_t i;
|
---|
491 | word32 iv[4], civ[4];
|
---|
492 |
|
---|
493 | blockcpy(iv, IV);
|
---|
494 |
|
---|
495 | for (i= 0; i < length; i++) {
|
---|
496 | t= *inp++;
|
---|
497 | rijndael_Encrypt(iv, civ, key->encsched, key->rounds);
|
---|
498 | B(iv)[ 0] = B(iv)[ 1];
|
---|
499 | B(iv)[ 1] = B(iv)[ 2];
|
---|
500 | B(iv)[ 2] = B(iv)[ 3];
|
---|
501 | B(iv)[ 3] = B(iv)[ 4];
|
---|
502 | B(iv)[ 4] = B(iv)[ 5];
|
---|
503 | B(iv)[ 5] = B(iv)[ 6];
|
---|
504 | B(iv)[ 6] = B(iv)[ 7];
|
---|
505 | B(iv)[ 7] = B(iv)[ 8];
|
---|
506 | B(iv)[ 8] = B(iv)[ 9];
|
---|
507 | B(iv)[ 9] = B(iv)[10];
|
---|
508 | B(iv)[10] = B(iv)[11];
|
---|
509 | B(iv)[11] = B(iv)[12];
|
---|
510 | B(iv)[12] = B(iv)[13];
|
---|
511 | B(iv)[13] = B(iv)[14];
|
---|
512 | B(iv)[14] = B(iv)[15];
|
---|
513 | B(iv)[15] = t;
|
---|
514 | t ^= B(civ)[0];
|
---|
515 | *outp++ = t;
|
---|
516 | }
|
---|
517 | blockcpy(IV, iv);
|
---|
518 | return length;
|
---|
519 | }
|
---|
520 |
|
---|
521 | ssize_t rijndael_pad(void *input, size_t length)
|
---|
522 | {
|
---|
523 | /* Adds at most one block of RFC-2040 style padding to the input to make
|
---|
524 | * it a whole number of blocks for easier encryption. To be used if the
|
---|
525 | * input may be less then one block in size, otherwise let the encryption
|
---|
526 | * routines use cypher stealing. The input buffer should allow enough
|
---|
527 | * space for the padding. The new length of the input is returned.
|
---|
528 | */
|
---|
529 | word8 *inp= input;
|
---|
530 | size_t padlen;
|
---|
531 |
|
---|
532 | /* Add padding up until the next block boundary. */
|
---|
533 | padlen= 16 - (length % 16);
|
---|
534 | memset(inp + length, padlen, padlen);
|
---|
535 | return length + padlen;
|
---|
536 | }
|
---|
537 |
|
---|
538 | ssize_t rijndael_unpad(const void *input, size_t length)
|
---|
539 | {
|
---|
540 | /* Remove RFC-2040 style padding after decryption. The true length of
|
---|
541 | * the input is returned, or the usual errors if the padding is incorrect.
|
---|
542 | */
|
---|
543 | const word8 *inp= input;
|
---|
544 | size_t i, padlen;
|
---|
545 |
|
---|
546 | if (length == 0 || (length % 16) != 0) return RD_BAD_BLOCK_LENGTH;
|
---|
547 | padlen = inp[length-1];
|
---|
548 | if (padlen <= 0 || padlen > 16) return RD_BAD_DATA;
|
---|
549 | for (i= 2; i <= padlen; i++) {
|
---|
550 | if (inp[length-i] != padlen) return RD_BAD_DATA;
|
---|
551 | }
|
---|
552 | return length - padlen;
|
---|
553 | }
|
---|
554 |
|
---|
555 | #ifdef INTERMEDIATE_VALUE_KAT
|
---|
556 |
|
---|
557 | void cipherEncryptUpdateRounds(rd_keyinstance *key,
|
---|
558 | const void *input, void *output, int rounds)
|
---|
559 | {
|
---|
560 | /* Encrypt a block only a specified number of rounds. */
|
---|
561 | word8 block[4][4];
|
---|
562 |
|
---|
563 | blockcpy(block, input);
|
---|
564 |
|
---|
565 | rijndaelEncryptRound(block, key->encsched, key->rounds, rounds);
|
---|
566 |
|
---|
567 | blockcpy(output, block);
|
---|
568 | }
|
---|
569 |
|
---|
570 | void cipherDecryptUpdateRounds(rd_keyinstance *key,
|
---|
571 | const void *input, void *output, int rounds)
|
---|
572 | {
|
---|
573 | /* Decrypt a block only a specified number of rounds. */
|
---|
574 | word8 block[4][4];
|
---|
575 |
|
---|
576 | blockcpy(block, input);
|
---|
577 |
|
---|
578 | rijndaelDecryptRound(block, key->decsched, key->rounds, rounds);
|
---|
579 |
|
---|
580 | blockcpy(output, block);
|
---|
581 | }
|
---|
582 | #endif /* INTERMEDIATE_VALUE_KAT */
|
---|
583 |
|
---|
584 | /*
|
---|
585 | * $PchId: rijndael_api.c,v 1.2 2001/01/10 22:01:20 philip Exp $
|
---|
586 | */
|
---|