source: trunk/minix/kernel/clock.c@ 20

Last change on this file since 20 was 9, checked in by Mattia Monga, 14 years ago

Minix 3.1.2a

File size: 12.4 KB
Line 
1/* This file contains the clock task, which handles time related functions.
2 * Important events that are handled by the CLOCK include setting and
3 * monitoring alarm timers and deciding when to (re)schedule processes.
4 * The CLOCK offers a direct interface to kernel processes. System services
5 * can access its services through system calls, such as sys_setalarm(). The
6 * CLOCK task thus is hidden from the outside world.
7 *
8 * Changes:
9 * Oct 08, 2005 reordering and comment editing (A. S. Woodhull)
10 * Mar 18, 2004 clock interface moved to SYSTEM task (Jorrit N. Herder)
11 * Sep 30, 2004 source code documentation updated (Jorrit N. Herder)
12 * Sep 24, 2004 redesigned alarm timers (Jorrit N. Herder)
13 *
14 * The function do_clocktick() is triggered by the clock's interrupt
15 * handler when a watchdog timer has expired or a process must be scheduled.
16 *
17 * In addition to the main clock_task() entry point, which starts the main
18 * loop, there are several other minor entry points:
19 * clock_stop: called just before MINIX shutdown
20 * get_uptime: get realtime since boot in clock ticks
21 * set_timer: set a watchdog timer (+)
22 * reset_timer: reset a watchdog timer (+)
23 * read_clock: read the counter of channel 0 of the 8253A timer
24 *
25 * (+) The CLOCK task keeps tracks of watchdog timers for the entire kernel.
26 * The watchdog functions of expired timers are executed in do_clocktick().
27 * It is crucial that watchdog functions not block, or the CLOCK task may
28 * be blocked. Do not send() a message when the receiver is not expecting it.
29 * Instead, notify(), which always returns, should be used.
30 */
31
32#include "kernel.h"
33#include "proc.h"
34#include <signal.h>
35#include <minix/com.h>
36
37/* Function prototype for PRIVATE functions. */
38FORWARD _PROTOTYPE( void init_clock, (void) );
39FORWARD _PROTOTYPE( int clock_handler, (irq_hook_t *hook) );
40FORWARD _PROTOTYPE( int do_clocktick, (message *m_ptr) );
41FORWARD _PROTOTYPE( void load_update, (void));
42
43/* Clock parameters. */
44#define COUNTER_FREQ (2*TIMER_FREQ) /* counter frequency using square wave */
45#define LATCH_COUNT 0x00 /* cc00xxxx, c = channel, x = any */
46#define SQUARE_WAVE 0x36 /* ccaammmb, a = access, m = mode, b = BCD */
47 /* 11x11, 11 = LSB then MSB, x11 = sq wave */
48#define TIMER_COUNT ((unsigned) (TIMER_FREQ/HZ)) /* initial value for counter*/
49#define TIMER_FREQ 1193182L /* clock frequency for timer in PC and AT */
50
51#define CLOCK_ACK_BIT 0x80 /* PS/2 clock interrupt acknowledge bit */
52
53/* The CLOCK's timers queue. The functions in <timers.h> operate on this.
54 * Each system process possesses a single synchronous alarm timer. If other
55 * kernel parts want to use additional timers, they must declare their own
56 * persistent (static) timer structure, which can be passed to the clock
57 * via (re)set_timer().
58 * When a timer expires its watchdog function is run by the CLOCK task.
59 */
60PRIVATE timer_t *clock_timers; /* queue of CLOCK timers */
61PRIVATE clock_t next_timeout; /* realtime that next timer expires */
62
63/* The time is incremented by the interrupt handler on each clock tick. */
64PRIVATE clock_t realtime; /* real time clock */
65PRIVATE irq_hook_t clock_hook; /* interrupt handler hook */
66
67/*===========================================================================*
68 * clock_task *
69 *===========================================================================*/
70PUBLIC void clock_task()
71{
72/* Main program of clock task. If the call is not HARD_INT it is an error.
73 */
74 message m; /* message buffer for both input and output */
75 int result; /* result returned by the handler */
76
77 init_clock(); /* initialize clock task */
78
79 /* Main loop of the clock task. Get work, process it. Never reply. */
80 while (TRUE) {
81
82 /* Go get a message. */
83 receive(ANY, &m);
84
85 /* Handle the request. Only clock ticks are expected. */
86 switch (m.m_type) {
87 case HARD_INT:
88 result = do_clocktick(&m); /* handle clock tick */
89 break;
90 default: /* illegal request type */
91 kprintf("CLOCK: illegal request %d from %d.\n", m.m_type,m.m_source);
92 }
93 }
94}
95
96/*===========================================================================*
97 * do_clocktick *
98 *===========================================================================*/
99PRIVATE int do_clocktick(m_ptr)
100message *m_ptr; /* pointer to request message */
101{
102/* Despite its name, this routine is not called on every clock tick. It
103 * is called on those clock ticks when a lot of work needs to be done.
104 */
105
106 /* A process used up a full quantum. The interrupt handler stored this
107 * process in 'prev_ptr'. First make sure that the process is not on the
108 * scheduling queues. Then announce the process ready again. Since it has
109 * no more time left, it gets a new quantum and is inserted at the right
110 * place in the queues. As a side-effect a new process will be scheduled.
111 */
112 if (prev_ptr->p_ticks_left <= 0 && priv(prev_ptr)->s_flags & PREEMPTIBLE) {
113 lock_dequeue(prev_ptr); /* take it off the queues */
114 lock_enqueue(prev_ptr); /* and reinsert it again */
115 }
116
117 /* Check if a clock timer expired and run its watchdog function. */
118 if (next_timeout <= realtime) {
119 tmrs_exptimers(&clock_timers, realtime, NULL);
120 next_timeout = clock_timers == NULL ?
121 TMR_NEVER : clock_timers->tmr_exp_time;
122 }
123
124 /* Inhibit sending a reply. */
125 return(EDONTREPLY);
126}
127
128/*===========================================================================*
129 * init_clock *
130 *===========================================================================*/
131PRIVATE void init_clock()
132{
133 /* Initialize the CLOCK's interrupt hook. */
134 clock_hook.proc_nr_e = CLOCK;
135
136 /* Initialize channel 0 of the 8253A timer to, e.g., 60 Hz, and register
137 * the CLOCK task's interrupt handler to be run on every clock tick.
138 */
139 outb(TIMER_MODE, SQUARE_WAVE); /* set timer to run continuously */
140 outb(TIMER0, TIMER_COUNT); /* load timer low byte */
141 outb(TIMER0, TIMER_COUNT >> 8); /* load timer high byte */
142 put_irq_handler(&clock_hook, CLOCK_IRQ, clock_handler);
143 enable_irq(&clock_hook); /* ready for clock interrupts */
144
145 /* Set a watchdog timer to periodically balance the scheduling queues. */
146 balance_queues(NULL); /* side-effect sets new timer */
147}
148
149/*===========================================================================*
150 * clock_stop *
151 *===========================================================================*/
152PUBLIC void clock_stop()
153{
154/* Reset the clock to the BIOS rate. (For rebooting.) */
155 outb(TIMER_MODE, 0x36);
156 outb(TIMER0, 0);
157 outb(TIMER0, 0);
158}
159
160/*===========================================================================*
161 * clock_handler *
162 *===========================================================================*/
163PRIVATE int clock_handler(hook)
164irq_hook_t *hook;
165{
166/* This executes on each clock tick (i.e., every time the timer chip generates
167 * an interrupt). It does a little bit of work so the clock task does not have
168 * to be called on every tick. The clock task is called when:
169 *
170 * (1) the scheduling quantum of the running process has expired, or
171 * (2) a timer has expired and the watchdog function should be run.
172 *
173 * Many global global and static variables are accessed here. The safety of
174 * this must be justified. All scheduling and message passing code acquires a
175 * lock by temporarily disabling interrupts, so no conflicts with calls from
176 * the task level can occur. Furthermore, interrupts are not reentrant, the
177 * interrupt handler cannot be bothered by other interrupts.
178 *
179 * Variables that are updated in the clock's interrupt handler:
180 * lost_ticks:
181 * Clock ticks counted outside the clock task. This for example
182 * is used when the boot monitor processes a real mode interrupt.
183 * realtime:
184 * The current uptime is incremented with all outstanding ticks.
185 * proc_ptr, bill_ptr:
186 * These are used for accounting. It does not matter if proc.c
187 * is changing them, provided they are always valid pointers,
188 * since at worst the previous process would be billed.
189 */
190 register unsigned ticks;
191
192 /* Acknowledge the PS/2 clock interrupt. */
193 if (machine.ps_mca) outb(PORT_B, inb(PORT_B) | CLOCK_ACK_BIT);
194
195 /* Get number of ticks and update realtime. */
196 ticks = lost_ticks + 1;
197 lost_ticks = 0;
198 realtime += ticks;
199
200 /* Update user and system accounting times. Charge the current process for
201 * user time. If the current process is not billable, that is, if a non-user
202 * process is running, charge the billable process for system time as well.
203 * Thus the unbillable process' user time is the billable user's system time.
204 */
205 proc_ptr->p_user_time += ticks;
206 if (priv(proc_ptr)->s_flags & PREEMPTIBLE) {
207 proc_ptr->p_ticks_left -= ticks;
208 }
209 if (! (priv(proc_ptr)->s_flags & BILLABLE)) {
210 bill_ptr->p_sys_time += ticks;
211 bill_ptr->p_ticks_left -= ticks;
212 }
213
214 /* Update load average. */
215 load_update();
216
217 /* Check if do_clocktick() must be called. Done for alarms and scheduling.
218 * Some processes, such as the kernel tasks, cannot be preempted.
219 */
220 if ((next_timeout <= realtime) || (proc_ptr->p_ticks_left <= 0)) {
221 prev_ptr = proc_ptr; /* store running process */
222 lock_notify(HARDWARE, CLOCK); /* send notification */
223 }
224 return(1); /* reenable interrupts */
225}
226
227/*===========================================================================*
228 * get_uptime *
229 *===========================================================================*/
230PUBLIC clock_t get_uptime()
231{
232/* Get and return the current clock uptime in ticks. */
233 return(realtime);
234}
235
236/*===========================================================================*
237 * set_timer *
238 *===========================================================================*/
239PUBLIC void set_timer(tp, exp_time, watchdog)
240struct timer *tp; /* pointer to timer structure */
241clock_t exp_time; /* expiration realtime */
242tmr_func_t watchdog; /* watchdog to be called */
243{
244/* Insert the new timer in the active timers list. Always update the
245 * next timeout time by setting it to the front of the active list.
246 */
247 tmrs_settimer(&clock_timers, tp, exp_time, watchdog, NULL);
248 next_timeout = clock_timers->tmr_exp_time;
249}
250
251/*===========================================================================*
252 * reset_timer *
253 *===========================================================================*/
254PUBLIC void reset_timer(tp)
255struct timer *tp; /* pointer to timer structure */
256{
257/* The timer pointed to by 'tp' is no longer needed. Remove it from both the
258 * active and expired lists. Always update the next timeout time by setting
259 * it to the front of the active list.
260 */
261 tmrs_clrtimer(&clock_timers, tp, NULL);
262 next_timeout = (clock_timers == NULL) ?
263 TMR_NEVER : clock_timers->tmr_exp_time;
264}
265
266/*===========================================================================*
267 * read_clock *
268 *===========================================================================*/
269PUBLIC unsigned long read_clock()
270{
271/* Read the counter of channel 0 of the 8253A timer. This counter counts
272 * down at a rate of TIMER_FREQ and restarts at TIMER_COUNT-1 when it
273 * reaches zero. A hardware interrupt (clock tick) occurs when the counter
274 * gets to zero and restarts its cycle.
275 */
276 unsigned count;
277
278 outb(TIMER_MODE, LATCH_COUNT);
279 count = inb(TIMER0);
280 count |= (inb(TIMER0) << 8);
281
282 return count;
283}
284
285/*===========================================================================*
286 * load_update *
287 *===========================================================================*/
288PRIVATE void load_update(void)
289{
290 u16_t slot;
291 int enqueued = -1, q; /* -1: special compensation for IDLE. */
292 struct proc *p;
293
294 /* Load average data is stored as a list of numbers in a circular
295 * buffer. Each slot accumulates _LOAD_UNIT_SECS of samples of
296 * the number of runnable processes. Computations can then
297 * be made of the load average over variable periods, in the
298 * user library (see getloadavg(3)).
299 */
300 slot = (realtime / HZ / _LOAD_UNIT_SECS) % _LOAD_HISTORY;
301 if(slot != kloadinfo.proc_last_slot) {
302 kloadinfo.proc_load_history[slot] = 0;
303 kloadinfo.proc_last_slot = slot;
304 }
305
306 /* Cumulation. How many processes are ready now? */
307 for(q = 0; q < NR_SCHED_QUEUES; q++)
308 for(p = rdy_head[q]; p != NIL_PROC; p = p->p_nextready)
309 enqueued++;
310
311 kloadinfo.proc_load_history[slot] += enqueued;
312
313 /* Up-to-dateness. */
314 kloadinfo.last_clock = realtime;
315}
316
Note: See TracBrowser for help on using the repository browser.