1 | /* This file contains essentially all of the process and message handling.
|
---|
2 | * Together with "mpx.s" it forms the lowest layer of the MINIX kernel.
|
---|
3 | * There is one entry point from the outside:
|
---|
4 | *
|
---|
5 | * sys_call: a system call, i.e., the kernel is trapped with an INT
|
---|
6 | *
|
---|
7 | * As well as several entry points used from the interrupt and task level:
|
---|
8 | *
|
---|
9 | * lock_notify: notify a process of a system event
|
---|
10 | * lock_send: send a message to a process
|
---|
11 | * lock_enqueue: put a process on one of the scheduling queues
|
---|
12 | * lock_dequeue: remove a process from the scheduling queues
|
---|
13 | *
|
---|
14 | * Changes:
|
---|
15 | * Aug 19, 2005 rewrote scheduling code (Jorrit N. Herder)
|
---|
16 | * Jul 25, 2005 rewrote system call handling (Jorrit N. Herder)
|
---|
17 | * May 26, 2005 rewrote message passing functions (Jorrit N. Herder)
|
---|
18 | * May 24, 2005 new notification system call (Jorrit N. Herder)
|
---|
19 | * Oct 28, 2004 nonblocking send and receive calls (Jorrit N. Herder)
|
---|
20 | *
|
---|
21 | * The code here is critical to make everything work and is important for the
|
---|
22 | * overall performance of the system. A large fraction of the code deals with
|
---|
23 | * list manipulation. To make this both easy to understand and fast to execute
|
---|
24 | * pointer pointers are used throughout the code. Pointer pointers prevent
|
---|
25 | * exceptions for the head or tail of a linked list.
|
---|
26 | *
|
---|
27 | * node_t *queue, *new_node; // assume these as global variables
|
---|
28 | * node_t **xpp = &queue; // get pointer pointer to head of queue
|
---|
29 | * while (*xpp != NULL) // find last pointer of the linked list
|
---|
30 | * xpp = &(*xpp)->next; // get pointer to next pointer
|
---|
31 | * *xpp = new_node; // now replace the end (the NULL pointer)
|
---|
32 | * new_node->next = NULL; // and mark the new end of the list
|
---|
33 | *
|
---|
34 | * For example, when adding a new node to the end of the list, one normally
|
---|
35 | * makes an exception for an empty list and looks up the end of the list for
|
---|
36 | * nonempty lists. As shown above, this is not required with pointer pointers.
|
---|
37 | */
|
---|
38 |
|
---|
39 | #include <minix/com.h>
|
---|
40 | #include <minix/callnr.h>
|
---|
41 | #include <minix/endpoint.h>
|
---|
42 | #include "debug.h"
|
---|
43 | #include "kernel.h"
|
---|
44 | #include "proc.h"
|
---|
45 | #include <signal.h>
|
---|
46 |
|
---|
47 | /* Scheduling and message passing functions. The functions are available to
|
---|
48 | * other parts of the kernel through lock_...(). The lock temporarily disables
|
---|
49 | * interrupts to prevent race conditions.
|
---|
50 | */
|
---|
51 | FORWARD _PROTOTYPE( int mini_send, (struct proc *caller_ptr, int dst_e,
|
---|
52 | message *m_ptr, unsigned flags));
|
---|
53 | FORWARD _PROTOTYPE( int mini_receive, (struct proc *caller_ptr, int src,
|
---|
54 | message *m_ptr, unsigned flags));
|
---|
55 | FORWARD _PROTOTYPE( int mini_notify, (struct proc *caller_ptr, int dst));
|
---|
56 | FORWARD _PROTOTYPE( int deadlock, (int function,
|
---|
57 | register struct proc *caller, int src_dst));
|
---|
58 | FORWARD _PROTOTYPE( void enqueue, (struct proc *rp));
|
---|
59 | FORWARD _PROTOTYPE( void dequeue, (struct proc *rp));
|
---|
60 | FORWARD _PROTOTYPE( void sched, (struct proc *rp, int *queue, int *front));
|
---|
61 | FORWARD _PROTOTYPE( void pick_proc, (void));
|
---|
62 |
|
---|
63 | #define BuildMess(m_ptr, src, dst_ptr) \
|
---|
64 | (m_ptr)->m_source = proc_addr(src)->p_endpoint; \
|
---|
65 | (m_ptr)->m_type = NOTIFY_FROM(src); \
|
---|
66 | (m_ptr)->NOTIFY_TIMESTAMP = get_uptime(); \
|
---|
67 | switch (src) { \
|
---|
68 | case HARDWARE: \
|
---|
69 | (m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_int_pending; \
|
---|
70 | priv(dst_ptr)->s_int_pending = 0; \
|
---|
71 | break; \
|
---|
72 | case SYSTEM: \
|
---|
73 | (m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_sig_pending; \
|
---|
74 | priv(dst_ptr)->s_sig_pending = 0; \
|
---|
75 | break; \
|
---|
76 | }
|
---|
77 |
|
---|
78 | #if (CHIP == INTEL)
|
---|
79 | #define CopyMess(s,sp,sm,dp,dm) \
|
---|
80 | cp_mess(proc_addr(s)->p_endpoint, \
|
---|
81 | (sp)->p_memmap[D].mem_phys, \
|
---|
82 | (vir_bytes)sm, (dp)->p_memmap[D].mem_phys, (vir_bytes)dm)
|
---|
83 | #endif /* (CHIP == INTEL) */
|
---|
84 |
|
---|
85 | #if (CHIP == M68000)
|
---|
86 | /* M68000 does not have cp_mess() in assembly like INTEL. Declare prototype
|
---|
87 | * for cp_mess() here and define the function below. Also define CopyMess.
|
---|
88 | */
|
---|
89 | #endif /* (CHIP == M68000) */
|
---|
90 |
|
---|
91 | /*===========================================================================*
|
---|
92 | * sys_call *
|
---|
93 | *===========================================================================*/
|
---|
94 | PUBLIC int sys_call(call_nr, src_dst_e, m_ptr, bit_map)
|
---|
95 | int call_nr; /* system call number and flags */
|
---|
96 | int src_dst_e; /* src to receive from or dst to send to */
|
---|
97 | message *m_ptr; /* pointer to message in the caller's space */
|
---|
98 | long bit_map; /* notification event set or flags */
|
---|
99 | {
|
---|
100 | /* System calls are done by trapping to the kernel with an INT instruction.
|
---|
101 | * The trap is caught and sys_call() is called to send or receive a message
|
---|
102 | * (or both). The caller is always given by 'proc_ptr'.
|
---|
103 | */
|
---|
104 | register struct proc *caller_ptr = proc_ptr; /* get pointer to caller */
|
---|
105 | int function = call_nr & SYSCALL_FUNC; /* get system call function */
|
---|
106 | unsigned flags = call_nr & SYSCALL_FLAGS; /* get flags */
|
---|
107 | int mask_entry; /* bit to check in send mask */
|
---|
108 | int group_size; /* used for deadlock check */
|
---|
109 | int result; /* the system call's result */
|
---|
110 | int src_dst;
|
---|
111 | vir_clicks vlo, vhi; /* virtual clicks containing message to send */
|
---|
112 |
|
---|
113 | #if 0
|
---|
114 | if (caller_ptr->p_rts_flags & SLOT_FREE)
|
---|
115 | {
|
---|
116 | kprintf("called by the dead?!?\n");
|
---|
117 | return EINVAL;
|
---|
118 | }
|
---|
119 | #endif
|
---|
120 |
|
---|
121 | /* Require a valid source and/ or destination process, unless echoing. */
|
---|
122 | if (src_dst_e != ANY && function != ECHO) {
|
---|
123 | if(!isokendpt(src_dst_e, &src_dst)) {
|
---|
124 | #if DEBUG_ENABLE_IPC_WARNINGS
|
---|
125 | kprintf("sys_call: trap %d by %d with bad endpoint %d\n",
|
---|
126 | function, proc_nr(caller_ptr), src_dst_e);
|
---|
127 | #endif
|
---|
128 | return EDEADSRCDST;
|
---|
129 | }
|
---|
130 | } else src_dst = src_dst_e;
|
---|
131 |
|
---|
132 | /* Check if the process has privileges for the requested call. Calls to the
|
---|
133 | * kernel may only be SENDREC, because tasks always reply and may not block
|
---|
134 | * if the caller doesn't do receive().
|
---|
135 | */
|
---|
136 | if (! (priv(caller_ptr)->s_trap_mask & (1 << function)) ||
|
---|
137 | (iskerneln(src_dst) && function != SENDREC
|
---|
138 | && function != RECEIVE)) {
|
---|
139 | #if DEBUG_ENABLE_IPC_WARNINGS
|
---|
140 | kprintf("sys_call: trap %d not allowed, caller %d, src_dst %d\n",
|
---|
141 | function, proc_nr(caller_ptr), src_dst);
|
---|
142 | #endif
|
---|
143 | return(ETRAPDENIED); /* trap denied by mask or kernel */
|
---|
144 | }
|
---|
145 |
|
---|
146 | /* If the call involves a message buffer, i.e., for SEND, RECEIVE, SENDREC,
|
---|
147 | * or ECHO, check the message pointer. This check allows a message to be
|
---|
148 | * anywhere in data or stack or gap. It will have to be made more elaborate
|
---|
149 | * for machines which don't have the gap mapped.
|
---|
150 | */
|
---|
151 | if (function & CHECK_PTR) {
|
---|
152 | vlo = (vir_bytes) m_ptr >> CLICK_SHIFT;
|
---|
153 | vhi = ((vir_bytes) m_ptr + MESS_SIZE - 1) >> CLICK_SHIFT;
|
---|
154 | if (vlo < caller_ptr->p_memmap[D].mem_vir || vlo > vhi ||
|
---|
155 | vhi >= caller_ptr->p_memmap[S].mem_vir +
|
---|
156 | caller_ptr->p_memmap[S].mem_len) {
|
---|
157 | #if DEBUG_ENABLE_IPC_WARNINGS
|
---|
158 | kprintf("sys_call: invalid message pointer, trap %d, caller %d\n",
|
---|
159 | function, proc_nr(caller_ptr));
|
---|
160 | #endif
|
---|
161 | return(EFAULT); /* invalid message pointer */
|
---|
162 | }
|
---|
163 | }
|
---|
164 |
|
---|
165 | /* If the call is to send to a process, i.e., for SEND, SENDREC or NOTIFY,
|
---|
166 | * verify that the caller is allowed to send to the given destination.
|
---|
167 | */
|
---|
168 | if (function & CHECK_DST) {
|
---|
169 | if (! get_sys_bit(priv(caller_ptr)->s_ipc_to, nr_to_id(src_dst))) {
|
---|
170 | #if DEBUG_ENABLE_IPC_WARNINGS
|
---|
171 | kprintf("sys_call: ipc mask denied trap %d from %d to %d\n",
|
---|
172 | function, proc_nr(caller_ptr), src_dst);
|
---|
173 | #endif
|
---|
174 | return(ECALLDENIED); /* call denied by ipc mask */
|
---|
175 | }
|
---|
176 | }
|
---|
177 |
|
---|
178 | /* Check for a possible deadlock for blocking SEND(REC) and RECEIVE. */
|
---|
179 | if (function & CHECK_DEADLOCK) {
|
---|
180 | if (group_size = deadlock(function, caller_ptr, src_dst)) {
|
---|
181 | #if DEBUG_ENABLE_IPC_WARNINGS
|
---|
182 | kprintf("sys_call: trap %d from %d to %d deadlocked, group size %d\n",
|
---|
183 | function, proc_nr(caller_ptr), src_dst, group_size);
|
---|
184 | #endif
|
---|
185 | return(ELOCKED);
|
---|
186 | }
|
---|
187 | }
|
---|
188 |
|
---|
189 | /* Now check if the call is known and try to perform the request. The only
|
---|
190 | * system calls that exist in MINIX are sending and receiving messages.
|
---|
191 | * - SENDREC: combines SEND and RECEIVE in a single system call
|
---|
192 | * - SEND: sender blocks until its message has been delivered
|
---|
193 | * - RECEIVE: receiver blocks until an acceptable message has arrived
|
---|
194 | * - NOTIFY: nonblocking call; deliver notification or mark pending
|
---|
195 | * - ECHO: nonblocking call; directly echo back the message
|
---|
196 | */
|
---|
197 | switch(function) {
|
---|
198 | case SENDREC:
|
---|
199 | /* A flag is set so that notifications cannot interrupt SENDREC. */
|
---|
200 | caller_ptr->p_misc_flags |= REPLY_PENDING;
|
---|
201 | /* fall through */
|
---|
202 | case SEND:
|
---|
203 | result = mini_send(caller_ptr, src_dst_e, m_ptr, flags);
|
---|
204 | if (function == SEND || result != OK) {
|
---|
205 | break; /* done, or SEND failed */
|
---|
206 | } /* fall through for SENDREC */
|
---|
207 | case RECEIVE:
|
---|
208 | if (function == RECEIVE)
|
---|
209 | caller_ptr->p_misc_flags &= ~REPLY_PENDING;
|
---|
210 | result = mini_receive(caller_ptr, src_dst_e, m_ptr, flags);
|
---|
211 | break;
|
---|
212 | case NOTIFY:
|
---|
213 | result = mini_notify(caller_ptr, src_dst);
|
---|
214 | break;
|
---|
215 | case ECHO:
|
---|
216 | CopyMess(caller_ptr->p_nr, caller_ptr, m_ptr, caller_ptr, m_ptr);
|
---|
217 | result = OK;
|
---|
218 | break;
|
---|
219 | default:
|
---|
220 | result = EBADCALL; /* illegal system call */
|
---|
221 | }
|
---|
222 |
|
---|
223 | /* Now, return the result of the system call to the caller. */
|
---|
224 | return(result);
|
---|
225 | }
|
---|
226 |
|
---|
227 | /*===========================================================================*
|
---|
228 | * deadlock *
|
---|
229 | *===========================================================================*/
|
---|
230 | PRIVATE int deadlock(function, cp, src_dst)
|
---|
231 | int function; /* trap number */
|
---|
232 | register struct proc *cp; /* pointer to caller */
|
---|
233 | int src_dst; /* src or dst process */
|
---|
234 | {
|
---|
235 | /* Check for deadlock. This can happen if 'caller_ptr' and 'src_dst' have
|
---|
236 | * a cyclic dependency of blocking send and receive calls. The only cyclic
|
---|
237 | * depency that is not fatal is if the caller and target directly SEND(REC)
|
---|
238 | * and RECEIVE to each other. If a deadlock is found, the group size is
|
---|
239 | * returned. Otherwise zero is returned.
|
---|
240 | */
|
---|
241 | register struct proc *xp; /* process pointer */
|
---|
242 | int group_size = 1; /* start with only caller */
|
---|
243 | int trap_flags;
|
---|
244 |
|
---|
245 | while (src_dst != ANY) { /* check while process nr */
|
---|
246 | int src_dst_e;
|
---|
247 | xp = proc_addr(src_dst); /* follow chain of processes */
|
---|
248 | group_size ++; /* extra process in group */
|
---|
249 |
|
---|
250 | /* Check whether the last process in the chain has a dependency. If it
|
---|
251 | * has not, the cycle cannot be closed and we are done.
|
---|
252 | */
|
---|
253 | if (xp->p_rts_flags & RECEIVING) { /* xp has dependency */
|
---|
254 | if(xp->p_getfrom_e == ANY) src_dst = ANY;
|
---|
255 | else okendpt(xp->p_getfrom_e, &src_dst);
|
---|
256 | } else if (xp->p_rts_flags & SENDING) { /* xp has dependency */
|
---|
257 | okendpt(xp->p_sendto_e, &src_dst);
|
---|
258 | } else {
|
---|
259 | return(0); /* not a deadlock */
|
---|
260 | }
|
---|
261 |
|
---|
262 | /* Now check if there is a cyclic dependency. For group sizes of two,
|
---|
263 | * a combination of SEND(REC) and RECEIVE is not fatal. Larger groups
|
---|
264 | * or other combinations indicate a deadlock.
|
---|
265 | */
|
---|
266 | if (src_dst == proc_nr(cp)) { /* possible deadlock */
|
---|
267 | if (group_size == 2) { /* caller and src_dst */
|
---|
268 | /* The function number is magically converted to flags. */
|
---|
269 | if ((xp->p_rts_flags ^ (function << 2)) & SENDING) {
|
---|
270 | return(0); /* not a deadlock */
|
---|
271 | }
|
---|
272 | }
|
---|
273 | return(group_size); /* deadlock found */
|
---|
274 | }
|
---|
275 | }
|
---|
276 | return(0); /* not a deadlock */
|
---|
277 | }
|
---|
278 |
|
---|
279 | /*===========================================================================*
|
---|
280 | * mini_send *
|
---|
281 | *===========================================================================*/
|
---|
282 | PRIVATE int mini_send(caller_ptr, dst_e, m_ptr, flags)
|
---|
283 | register struct proc *caller_ptr; /* who is trying to send a message? */
|
---|
284 | int dst_e; /* to whom is message being sent? */
|
---|
285 | message *m_ptr; /* pointer to message buffer */
|
---|
286 | unsigned flags; /* system call flags */
|
---|
287 | {
|
---|
288 | /* Send a message from 'caller_ptr' to 'dst'. If 'dst' is blocked waiting
|
---|
289 | * for this message, copy the message to it and unblock 'dst'. If 'dst' is
|
---|
290 | * not waiting at all, or is waiting for another source, queue 'caller_ptr'.
|
---|
291 | */
|
---|
292 | register struct proc *dst_ptr;
|
---|
293 | register struct proc **xpp;
|
---|
294 | int dst_p;
|
---|
295 |
|
---|
296 | dst_p = _ENDPOINT_P(dst_e);
|
---|
297 | dst_ptr = proc_addr(dst_p);
|
---|
298 |
|
---|
299 | if (dst_ptr->p_rts_flags & NO_ENDPOINT) return EDSTDIED;
|
---|
300 |
|
---|
301 | /* Check if 'dst' is blocked waiting for this message. The destination's
|
---|
302 | * SENDING flag may be set when its SENDREC call blocked while sending.
|
---|
303 | */
|
---|
304 | if ( (dst_ptr->p_rts_flags & (RECEIVING | SENDING)) == RECEIVING &&
|
---|
305 | (dst_ptr->p_getfrom_e == ANY
|
---|
306 | || dst_ptr->p_getfrom_e == caller_ptr->p_endpoint)) {
|
---|
307 | /* Destination is indeed waiting for this message. */
|
---|
308 | CopyMess(caller_ptr->p_nr, caller_ptr, m_ptr, dst_ptr,
|
---|
309 | dst_ptr->p_messbuf);
|
---|
310 | if ((dst_ptr->p_rts_flags &= ~RECEIVING) == 0) enqueue(dst_ptr);
|
---|
311 | } else if ( ! (flags & NON_BLOCKING)) {
|
---|
312 | /* Destination is not waiting. Block and dequeue caller. */
|
---|
313 | caller_ptr->p_messbuf = m_ptr;
|
---|
314 | if (caller_ptr->p_rts_flags == 0) dequeue(caller_ptr);
|
---|
315 | caller_ptr->p_rts_flags |= SENDING;
|
---|
316 | caller_ptr->p_sendto_e = dst_e;
|
---|
317 |
|
---|
318 | /* Process is now blocked. Put in on the destination's queue. */
|
---|
319 | xpp = &dst_ptr->p_caller_q; /* find end of list */
|
---|
320 | while (*xpp != NIL_PROC) xpp = &(*xpp)->p_q_link;
|
---|
321 | *xpp = caller_ptr; /* add caller to end */
|
---|
322 | caller_ptr->p_q_link = NIL_PROC; /* mark new end of list */
|
---|
323 | } else {
|
---|
324 | return(ENOTREADY);
|
---|
325 | }
|
---|
326 | return(OK);
|
---|
327 | }
|
---|
328 |
|
---|
329 | /*===========================================================================*
|
---|
330 | * mini_receive *
|
---|
331 | *===========================================================================*/
|
---|
332 | PRIVATE int mini_receive(caller_ptr, src_e, m_ptr, flags)
|
---|
333 | register struct proc *caller_ptr; /* process trying to get message */
|
---|
334 | int src_e; /* which message source is wanted */
|
---|
335 | message *m_ptr; /* pointer to message buffer */
|
---|
336 | unsigned flags; /* system call flags */
|
---|
337 | {
|
---|
338 | /* A process or task wants to get a message. If a message is already queued,
|
---|
339 | * acquire it and deblock the sender. If no message from the desired source
|
---|
340 | * is available block the caller, unless the flags don't allow blocking.
|
---|
341 | */
|
---|
342 | register struct proc **xpp;
|
---|
343 | register struct notification **ntf_q_pp;
|
---|
344 | message m;
|
---|
345 | int bit_nr;
|
---|
346 | sys_map_t *map;
|
---|
347 | bitchunk_t *chunk;
|
---|
348 | int i, src_id, src_proc_nr, src_p;
|
---|
349 |
|
---|
350 | if(src_e == ANY) src_p = ANY;
|
---|
351 | else
|
---|
352 | {
|
---|
353 | okendpt(src_e, &src_p);
|
---|
354 | if (proc_addr(src_p)->p_rts_flags & NO_ENDPOINT) return ESRCDIED;
|
---|
355 | }
|
---|
356 |
|
---|
357 |
|
---|
358 | /* Check to see if a message from desired source is already available.
|
---|
359 | * The caller's SENDING flag may be set if SENDREC couldn't send. If it is
|
---|
360 | * set, the process should be blocked.
|
---|
361 | */
|
---|
362 | if (!(caller_ptr->p_rts_flags & SENDING)) {
|
---|
363 |
|
---|
364 | /* Check if there are pending notifications, except for SENDREC. */
|
---|
365 | if (! (caller_ptr->p_misc_flags & REPLY_PENDING)) {
|
---|
366 |
|
---|
367 | map = &priv(caller_ptr)->s_notify_pending;
|
---|
368 | for (chunk=&map->chunk[0]; chunk<&map->chunk[NR_SYS_CHUNKS]; chunk++) {
|
---|
369 |
|
---|
370 | /* Find a pending notification from the requested source. */
|
---|
371 | if (! *chunk) continue; /* no bits in chunk */
|
---|
372 | for (i=0; ! (*chunk & (1<<i)); ++i) {} /* look up the bit */
|
---|
373 | src_id = (chunk - &map->chunk[0]) * BITCHUNK_BITS + i;
|
---|
374 | if (src_id >= NR_SYS_PROCS) break; /* out of range */
|
---|
375 | src_proc_nr = id_to_nr(src_id); /* get source proc */
|
---|
376 | #if DEBUG_ENABLE_IPC_WARNINGS
|
---|
377 | if(src_proc_nr == NONE) {
|
---|
378 | kprintf("mini_receive: sending notify from NONE\n");
|
---|
379 | }
|
---|
380 | #endif
|
---|
381 | if (src_e!=ANY && src_p != src_proc_nr) continue;/* source not ok */
|
---|
382 | *chunk &= ~(1 << i); /* no longer pending */
|
---|
383 |
|
---|
384 | /* Found a suitable source, deliver the notification message. */
|
---|
385 | BuildMess(&m, src_proc_nr, caller_ptr); /* assemble message */
|
---|
386 | CopyMess(src_proc_nr, proc_addr(HARDWARE), &m, caller_ptr, m_ptr);
|
---|
387 | return(OK); /* report success */
|
---|
388 | }
|
---|
389 | }
|
---|
390 |
|
---|
391 | /* Check caller queue. Use pointer pointers to keep code simple. */
|
---|
392 | xpp = &caller_ptr->p_caller_q;
|
---|
393 | while (*xpp != NIL_PROC) {
|
---|
394 | if (src_e == ANY || src_p == proc_nr(*xpp)) {
|
---|
395 | #if 0
|
---|
396 | if ((*xpp)->p_rts_flags & SLOT_FREE)
|
---|
397 | {
|
---|
398 | kprintf("listening to the dead?!?\n");
|
---|
399 | return EINVAL;
|
---|
400 | }
|
---|
401 | #endif
|
---|
402 |
|
---|
403 | /* Found acceptable message. Copy it and update status. */
|
---|
404 | CopyMess((*xpp)->p_nr, *xpp, (*xpp)->p_messbuf, caller_ptr, m_ptr);
|
---|
405 | if (((*xpp)->p_rts_flags &= ~SENDING) == 0) enqueue(*xpp);
|
---|
406 | *xpp = (*xpp)->p_q_link; /* remove from queue */
|
---|
407 | return(OK); /* report success */
|
---|
408 | }
|
---|
409 | xpp = &(*xpp)->p_q_link; /* proceed to next */
|
---|
410 | }
|
---|
411 | }
|
---|
412 |
|
---|
413 | /* No suitable message is available or the caller couldn't send in SENDREC.
|
---|
414 | * Block the process trying to receive, unless the flags tell otherwise.
|
---|
415 | */
|
---|
416 | if ( ! (flags & NON_BLOCKING)) {
|
---|
417 | caller_ptr->p_getfrom_e = src_e;
|
---|
418 | caller_ptr->p_messbuf = m_ptr;
|
---|
419 | if (caller_ptr->p_rts_flags == 0) dequeue(caller_ptr);
|
---|
420 | caller_ptr->p_rts_flags |= RECEIVING;
|
---|
421 | return(OK);
|
---|
422 | } else {
|
---|
423 | return(ENOTREADY);
|
---|
424 | }
|
---|
425 | }
|
---|
426 |
|
---|
427 | /*===========================================================================*
|
---|
428 | * mini_notify *
|
---|
429 | *===========================================================================*/
|
---|
430 | PRIVATE int mini_notify(caller_ptr, dst)
|
---|
431 | register struct proc *caller_ptr; /* sender of the notification */
|
---|
432 | int dst; /* which process to notify */
|
---|
433 | {
|
---|
434 | register struct proc *dst_ptr = proc_addr(dst);
|
---|
435 | int src_id; /* source id for late delivery */
|
---|
436 | message m; /* the notification message */
|
---|
437 |
|
---|
438 | /* Check to see if target is blocked waiting for this message. A process
|
---|
439 | * can be both sending and receiving during a SENDREC system call.
|
---|
440 | */
|
---|
441 | if ((dst_ptr->p_rts_flags & (RECEIVING|SENDING)) == RECEIVING &&
|
---|
442 | ! (dst_ptr->p_misc_flags & REPLY_PENDING) &&
|
---|
443 | (dst_ptr->p_getfrom_e == ANY ||
|
---|
444 | dst_ptr->p_getfrom_e == caller_ptr->p_endpoint)) {
|
---|
445 |
|
---|
446 | /* Destination is indeed waiting for a message. Assemble a notification
|
---|
447 | * message and deliver it. Copy from pseudo-source HARDWARE, since the
|
---|
448 | * message is in the kernel's address space.
|
---|
449 | */
|
---|
450 | BuildMess(&m, proc_nr(caller_ptr), dst_ptr);
|
---|
451 | CopyMess(proc_nr(caller_ptr), proc_addr(HARDWARE), &m,
|
---|
452 | dst_ptr, dst_ptr->p_messbuf);
|
---|
453 | dst_ptr->p_rts_flags &= ~RECEIVING; /* deblock destination */
|
---|
454 | if (dst_ptr->p_rts_flags == 0) enqueue(dst_ptr);
|
---|
455 | return(OK);
|
---|
456 | }
|
---|
457 |
|
---|
458 | /* Destination is not ready to receive the notification. Add it to the
|
---|
459 | * bit map with pending notifications. Note the indirectness: the system id
|
---|
460 | * instead of the process number is used in the pending bit map.
|
---|
461 | */
|
---|
462 | src_id = priv(caller_ptr)->s_id;
|
---|
463 | set_sys_bit(priv(dst_ptr)->s_notify_pending, src_id);
|
---|
464 | return(OK);
|
---|
465 | }
|
---|
466 |
|
---|
467 | /*===========================================================================*
|
---|
468 | * lock_notify *
|
---|
469 | *===========================================================================*/
|
---|
470 | PUBLIC int lock_notify(src_e, dst_e)
|
---|
471 | int src_e; /* (endpoint) sender of the notification */
|
---|
472 | int dst_e; /* (endpoint) who is to be notified */
|
---|
473 | {
|
---|
474 | /* Safe gateway to mini_notify() for tasks and interrupt handlers. The sender
|
---|
475 | * is explicitely given to prevent confusion where the call comes from. MINIX
|
---|
476 | * kernel is not reentrant, which means to interrupts are disabled after
|
---|
477 | * the first kernel entry (hardware interrupt, trap, or exception). Locking
|
---|
478 | * is done by temporarily disabling interrupts.
|
---|
479 | */
|
---|
480 | int result, src, dst;
|
---|
481 |
|
---|
482 | if(!isokendpt(src_e, &src) || !isokendpt(dst_e, &dst))
|
---|
483 | return EDEADSRCDST;
|
---|
484 |
|
---|
485 | /* Exception or interrupt occurred, thus already locked. */
|
---|
486 | if (k_reenter >= 0) {
|
---|
487 | result = mini_notify(proc_addr(src), dst);
|
---|
488 | }
|
---|
489 |
|
---|
490 | /* Call from task level, locking is required. */
|
---|
491 | else {
|
---|
492 | lock(0, "notify");
|
---|
493 | result = mini_notify(proc_addr(src), dst);
|
---|
494 | unlock(0);
|
---|
495 | }
|
---|
496 | return(result);
|
---|
497 | }
|
---|
498 |
|
---|
499 | /*===========================================================================*
|
---|
500 | * enqueue *
|
---|
501 | *===========================================================================*/
|
---|
502 | PRIVATE void enqueue(rp)
|
---|
503 | register struct proc *rp; /* this process is now runnable */
|
---|
504 | {
|
---|
505 | /* Add 'rp' to one of the queues of runnable processes. This function is
|
---|
506 | * responsible for inserting a process into one of the scheduling queues.
|
---|
507 | * The mechanism is implemented here. The actual scheduling policy is
|
---|
508 | * defined in sched() and pick_proc().
|
---|
509 | */
|
---|
510 | int q; /* scheduling queue to use */
|
---|
511 | int front; /* add to front or back */
|
---|
512 |
|
---|
513 | #if DEBUG_SCHED_CHECK
|
---|
514 | check_runqueues("enqueue");
|
---|
515 | if (rp->p_ready) kprintf("enqueue() already ready process\n");
|
---|
516 | #endif
|
---|
517 |
|
---|
518 | /* Determine where to insert to process. */
|
---|
519 | sched(rp, &q, &front);
|
---|
520 |
|
---|
521 | /* Now add the process to the queue. */
|
---|
522 | if (rdy_head[q] == NIL_PROC) { /* add to empty queue */
|
---|
523 | rdy_head[q] = rdy_tail[q] = rp; /* create a new queue */
|
---|
524 | rp->p_nextready = NIL_PROC; /* mark new end */
|
---|
525 | }
|
---|
526 | else if (front) { /* add to head of queue */
|
---|
527 | rp->p_nextready = rdy_head[q]; /* chain head of queue */
|
---|
528 | rdy_head[q] = rp; /* set new queue head */
|
---|
529 | }
|
---|
530 | else { /* add to tail of queue */
|
---|
531 | rdy_tail[q]->p_nextready = rp; /* chain tail of queue */
|
---|
532 | rdy_tail[q] = rp; /* set new queue tail */
|
---|
533 | rp->p_nextready = NIL_PROC; /* mark new end */
|
---|
534 | }
|
---|
535 |
|
---|
536 | /* Now select the next process to run. */
|
---|
537 | pick_proc();
|
---|
538 |
|
---|
539 | #if DEBUG_SCHED_CHECK
|
---|
540 | rp->p_ready = 1;
|
---|
541 | check_runqueues("enqueue");
|
---|
542 | #endif
|
---|
543 | }
|
---|
544 |
|
---|
545 | /*===========================================================================*
|
---|
546 | * dequeue *
|
---|
547 | *===========================================================================*/
|
---|
548 | PRIVATE void dequeue(rp)
|
---|
549 | register struct proc *rp; /* this process is no longer runnable */
|
---|
550 | {
|
---|
551 | /* A process must be removed from the scheduling queues, for example, because
|
---|
552 | * it has blocked. If the currently active process is removed, a new process
|
---|
553 | * is picked to run by calling pick_proc().
|
---|
554 | */
|
---|
555 | register int q = rp->p_priority; /* queue to use */
|
---|
556 | register struct proc **xpp; /* iterate over queue */
|
---|
557 | register struct proc *prev_xp;
|
---|
558 |
|
---|
559 | /* Side-effect for kernel: check if the task's stack still is ok? */
|
---|
560 | if (iskernelp(rp)) {
|
---|
561 | if (*priv(rp)->s_stack_guard != STACK_GUARD)
|
---|
562 | panic("stack overrun by task", proc_nr(rp));
|
---|
563 | }
|
---|
564 |
|
---|
565 | #if DEBUG_SCHED_CHECK
|
---|
566 | check_runqueues("dequeue");
|
---|
567 | if (! rp->p_ready) kprintf("dequeue() already unready process\n");
|
---|
568 | #endif
|
---|
569 |
|
---|
570 | /* Now make sure that the process is not in its ready queue. Remove the
|
---|
571 | * process if it is found. A process can be made unready even if it is not
|
---|
572 | * running by being sent a signal that kills it.
|
---|
573 | */
|
---|
574 | prev_xp = NIL_PROC;
|
---|
575 | for (xpp = &rdy_head[q]; *xpp != NIL_PROC; xpp = &(*xpp)->p_nextready) {
|
---|
576 |
|
---|
577 | if (*xpp == rp) { /* found process to remove */
|
---|
578 | *xpp = (*xpp)->p_nextready; /* replace with next chain */
|
---|
579 | if (rp == rdy_tail[q]) /* queue tail removed */
|
---|
580 | rdy_tail[q] = prev_xp; /* set new tail */
|
---|
581 | if (rp == proc_ptr || rp == next_ptr) /* active process removed */
|
---|
582 | pick_proc(); /* pick new process to run */
|
---|
583 | break;
|
---|
584 | }
|
---|
585 | prev_xp = *xpp; /* save previous in chain */
|
---|
586 | }
|
---|
587 |
|
---|
588 | #if DEBUG_SCHED_CHECK
|
---|
589 | rp->p_ready = 0;
|
---|
590 | check_runqueues("dequeue");
|
---|
591 | #endif
|
---|
592 | }
|
---|
593 |
|
---|
594 | /*===========================================================================*
|
---|
595 | * sched *
|
---|
596 | *===========================================================================*/
|
---|
597 | PRIVATE void sched(rp, queue, front)
|
---|
598 | register struct proc *rp; /* process to be scheduled */
|
---|
599 | int *queue; /* return: queue to use */
|
---|
600 | int *front; /* return: front or back */
|
---|
601 | {
|
---|
602 | /* This function determines the scheduling policy. It is called whenever a
|
---|
603 | * process must be added to one of the scheduling queues to decide where to
|
---|
604 | * insert it. As a side-effect the process' priority may be updated.
|
---|
605 | */
|
---|
606 | int time_left = (rp->p_ticks_left > 0); /* quantum fully consumed */
|
---|
607 |
|
---|
608 | /* Check whether the process has time left. Otherwise give a new quantum
|
---|
609 | * and lower the process' priority, unless the process already is in the
|
---|
610 | * lowest queue.
|
---|
611 | */
|
---|
612 | if (! time_left) { /* quantum consumed ? */
|
---|
613 | rp->p_ticks_left = rp->p_quantum_size; /* give new quantum */
|
---|
614 | if (rp->p_priority < (IDLE_Q-1)) {
|
---|
615 | rp->p_priority += 1; /* lower priority */
|
---|
616 | }
|
---|
617 | }
|
---|
618 |
|
---|
619 | /* If there is time left, the process is added to the front of its queue,
|
---|
620 | * so that it can immediately run. The queue to use simply is always the
|
---|
621 | * process' current priority.
|
---|
622 | */
|
---|
623 | *queue = rp->p_priority;
|
---|
624 | *front = time_left;
|
---|
625 | }
|
---|
626 |
|
---|
627 | /*===========================================================================*
|
---|
628 | * pick_proc *
|
---|
629 | *===========================================================================*/
|
---|
630 | PRIVATE void pick_proc()
|
---|
631 | {
|
---|
632 | /* Decide who to run now. A new process is selected by setting 'next_ptr'.
|
---|
633 | * When a billable process is selected, record it in 'bill_ptr', so that the
|
---|
634 | * clock task can tell who to bill for system time.
|
---|
635 | */
|
---|
636 | register struct proc *rp; /* process to run */
|
---|
637 | int q; /* iterate over queues */
|
---|
638 |
|
---|
639 | /* Check each of the scheduling queues for ready processes. The number of
|
---|
640 | * queues is defined in proc.h, and priorities are set in the task table.
|
---|
641 | * The lowest queue contains IDLE, which is always ready.
|
---|
642 | */
|
---|
643 | for (q=0; q < NR_SCHED_QUEUES; q++) {
|
---|
644 | if ( (rp = rdy_head[q]) != NIL_PROC) {
|
---|
645 | next_ptr = rp; /* run process 'rp' next */
|
---|
646 | if (priv(rp)->s_flags & BILLABLE)
|
---|
647 | bill_ptr = rp; /* bill for system time */
|
---|
648 | return;
|
---|
649 | }
|
---|
650 | }
|
---|
651 | }
|
---|
652 |
|
---|
653 | /*===========================================================================*
|
---|
654 | * balance_queues *
|
---|
655 | *===========================================================================*/
|
---|
656 | #define Q_BALANCE_TICKS 100
|
---|
657 | PUBLIC void balance_queues(tp)
|
---|
658 | timer_t *tp; /* watchdog timer pointer */
|
---|
659 | {
|
---|
660 | /* Check entire process table and give all process a higher priority. This
|
---|
661 | * effectively means giving a new quantum. If a process already is at its
|
---|
662 | * maximum priority, its quantum will be renewed.
|
---|
663 | */
|
---|
664 | static timer_t queue_timer; /* timer structure to use */
|
---|
665 | register struct proc* rp; /* process table pointer */
|
---|
666 | clock_t next_period; /* time of next period */
|
---|
667 | int ticks_added = 0; /* total time added */
|
---|
668 |
|
---|
669 | for (rp=BEG_PROC_ADDR; rp<END_PROC_ADDR; rp++) {
|
---|
670 | if (! isemptyp(rp)) { /* check slot use */
|
---|
671 | lock(5,"balance_queues");
|
---|
672 | if (rp->p_priority > rp->p_max_priority) { /* update priority? */
|
---|
673 | if (rp->p_rts_flags == 0) dequeue(rp); /* take off queue */
|
---|
674 | ticks_added += rp->p_quantum_size; /* do accounting */
|
---|
675 | rp->p_priority -= 1; /* raise priority */
|
---|
676 | if (rp->p_rts_flags == 0) enqueue(rp); /* put on queue */
|
---|
677 | }
|
---|
678 | else {
|
---|
679 | ticks_added += rp->p_quantum_size - rp->p_ticks_left;
|
---|
680 | rp->p_ticks_left = rp->p_quantum_size; /* give new quantum */
|
---|
681 | }
|
---|
682 | unlock(5);
|
---|
683 | }
|
---|
684 | }
|
---|
685 | #if DEBUG
|
---|
686 | kprintf("ticks_added: %d\n", ticks_added);
|
---|
687 | #endif
|
---|
688 |
|
---|
689 | /* Now schedule a new watchdog timer to balance the queues again. The
|
---|
690 | * period depends on the total amount of quantum ticks added.
|
---|
691 | */
|
---|
692 | next_period = MAX(Q_BALANCE_TICKS, ticks_added); /* calculate next */
|
---|
693 | set_timer(&queue_timer, get_uptime() + next_period, balance_queues);
|
---|
694 | }
|
---|
695 |
|
---|
696 | /*===========================================================================*
|
---|
697 | * lock_send *
|
---|
698 | *===========================================================================*/
|
---|
699 | PUBLIC int lock_send(dst_e, m_ptr)
|
---|
700 | int dst_e; /* to whom is message being sent? */
|
---|
701 | message *m_ptr; /* pointer to message buffer */
|
---|
702 | {
|
---|
703 | /* Safe gateway to mini_send() for tasks. */
|
---|
704 | int result;
|
---|
705 | lock(2, "send");
|
---|
706 | result = mini_send(proc_ptr, dst_e, m_ptr, NON_BLOCKING);
|
---|
707 | unlock(2);
|
---|
708 | return(result);
|
---|
709 | }
|
---|
710 |
|
---|
711 | /*===========================================================================*
|
---|
712 | * lock_enqueue *
|
---|
713 | *===========================================================================*/
|
---|
714 | PUBLIC void lock_enqueue(rp)
|
---|
715 | struct proc *rp; /* this process is now runnable */
|
---|
716 | {
|
---|
717 | /* Safe gateway to enqueue() for tasks. */
|
---|
718 | lock(3, "enqueue");
|
---|
719 | enqueue(rp);
|
---|
720 | unlock(3);
|
---|
721 | }
|
---|
722 |
|
---|
723 | /*===========================================================================*
|
---|
724 | * lock_dequeue *
|
---|
725 | *===========================================================================*/
|
---|
726 | PUBLIC void lock_dequeue(rp)
|
---|
727 | struct proc *rp; /* this process is no longer runnable */
|
---|
728 | {
|
---|
729 | /* Safe gateway to dequeue() for tasks. */
|
---|
730 | if (k_reenter >= 0) {
|
---|
731 | /* We're in an exception or interrupt, so don't lock (and ...
|
---|
732 | * don't unlock).
|
---|
733 | */
|
---|
734 | dequeue(rp);
|
---|
735 | } else {
|
---|
736 | lock(4, "dequeue");
|
---|
737 | dequeue(rp);
|
---|
738 | unlock(4);
|
---|
739 | }
|
---|
740 | }
|
---|
741 |
|
---|
742 | /*===========================================================================*
|
---|
743 | * isokendpt_f *
|
---|
744 | *===========================================================================*/
|
---|
745 | #if DEBUG_ENABLE_IPC_WARNINGS
|
---|
746 | PUBLIC int isokendpt_f(file, line, e, p, fatalflag)
|
---|
747 | char *file;
|
---|
748 | int line;
|
---|
749 | #else
|
---|
750 | PUBLIC int isokendpt_f(e, p, fatalflag)
|
---|
751 | #endif
|
---|
752 | int e, *p, fatalflag;
|
---|
753 | {
|
---|
754 | int ok = 0;
|
---|
755 | /* Convert an endpoint number into a process number.
|
---|
756 | * Return nonzero if the process is alive with the corresponding
|
---|
757 | * generation number, zero otherwise.
|
---|
758 | *
|
---|
759 | * This function is called with file and line number by the
|
---|
760 | * isokendpt_d macro if DEBUG_ENABLE_IPC_WARNINGS is defined,
|
---|
761 | * otherwise without. This allows us to print the where the
|
---|
762 | * conversion was attempted, making the errors verbose without
|
---|
763 | * adding code for that at every call.
|
---|
764 | *
|
---|
765 | * If fatalflag is nonzero, we must panic if the conversion doesn't
|
---|
766 | * succeed.
|
---|
767 | */
|
---|
768 | *p = _ENDPOINT_P(e);
|
---|
769 | if(!isokprocn(*p)) {
|
---|
770 | #if DEBUG_ENABLE_IPC_WARNINGS
|
---|
771 | kprintf("kernel:%s:%d: bad endpoint %d: proc %d out of range\n",
|
---|
772 | file, line, e, *p);
|
---|
773 | #endif
|
---|
774 | } else if(isemptyn(*p)) {
|
---|
775 | #if DEBUG_ENABLE_IPC_WARNINGS
|
---|
776 | kprintf("kernel:%s:%d: bad endpoint %d: proc %d empty\n", file, line, e, *p);
|
---|
777 | #endif
|
---|
778 | } else if(proc_addr(*p)->p_endpoint != e) {
|
---|
779 | #if DEBUG_ENABLE_IPC_WARNINGS
|
---|
780 | kprintf("kernel:%s:%d: bad endpoint %d: proc %d has ept %d (generation %d vs. %d)\n", file, line,
|
---|
781 | e, *p, proc_addr(*p)->p_endpoint,
|
---|
782 | _ENDPOINT_G(e), _ENDPOINT_G(proc_addr(*p)->p_endpoint));
|
---|
783 | #endif
|
---|
784 | } else ok = 1;
|
---|
785 | if(!ok && fatalflag) {
|
---|
786 | panic("invalid endpoint ", e);
|
---|
787 | }
|
---|
788 | return ok;
|
---|
789 | }
|
---|
790 |
|
---|