[9] | 1 | /* This task handles the interface between the kernel and user-level servers.
|
---|
| 2 | * System services can be accessed by doing a system call. System calls are
|
---|
| 3 | * transformed into request messages, which are handled by this task. By
|
---|
| 4 | * convention, a sys_call() is transformed in a SYS_CALL request message that
|
---|
| 5 | * is handled in a function named do_call().
|
---|
| 6 | *
|
---|
| 7 | * A private call vector is used to map all system calls to the functions that
|
---|
| 8 | * handle them. The actual handler functions are contained in separate files
|
---|
| 9 | * to keep this file clean. The call vector is used in the system task's main
|
---|
| 10 | * loop to handle all incoming requests.
|
---|
| 11 | *
|
---|
| 12 | * In addition to the main sys_task() entry point, which starts the main loop,
|
---|
| 13 | * there are several other minor entry points:
|
---|
| 14 | * get_priv: assign privilege structure to user or system process
|
---|
| 15 | * send_sig: send a signal directly to a system process
|
---|
| 16 | * cause_sig: take action to cause a signal to occur via PM
|
---|
| 17 | * umap_local: map virtual address in LOCAL_SEG to physical
|
---|
| 18 | * umap_remote: map virtual address in REMOTE_SEG to physical
|
---|
| 19 | * umap_bios: map virtual address in BIOS_SEG to physical
|
---|
| 20 | * virtual_copy: copy bytes from one virtual address to another
|
---|
| 21 | * get_randomness: accumulate randomness in a buffer
|
---|
| 22 | * clear_endpoint: remove a process' ability to send and receive messages
|
---|
| 23 | *
|
---|
| 24 | * Changes:
|
---|
| 25 | * Aug 04, 2005 check if system call is allowed (Jorrit N. Herder)
|
---|
| 26 | * Jul 20, 2005 send signal to services with message (Jorrit N. Herder)
|
---|
| 27 | * Jan 15, 2005 new, generalized virtual copy function (Jorrit N. Herder)
|
---|
| 28 | * Oct 10, 2004 dispatch system calls from call vector (Jorrit N. Herder)
|
---|
| 29 | * Sep 30, 2004 source code documentation updated (Jorrit N. Herder)
|
---|
| 30 | */
|
---|
| 31 |
|
---|
| 32 | #include "debug.h"
|
---|
| 33 | #include "kernel.h"
|
---|
| 34 | #include "system.h"
|
---|
| 35 | #include <stdlib.h>
|
---|
| 36 | #include <signal.h>
|
---|
| 37 | #include <unistd.h>
|
---|
| 38 | #include <sys/sigcontext.h>
|
---|
| 39 | #include <minix/endpoint.h>
|
---|
| 40 | #if (CHIP == INTEL)
|
---|
| 41 | #include <ibm/memory.h>
|
---|
| 42 | #include "protect.h"
|
---|
| 43 | #endif
|
---|
| 44 |
|
---|
| 45 | /* Declaration of the call vector that defines the mapping of system calls
|
---|
| 46 | * to handler functions. The vector is initialized in sys_init() with map(),
|
---|
| 47 | * which makes sure the system call numbers are ok. No space is allocated,
|
---|
| 48 | * because the dummy is declared extern. If an illegal call is given, the
|
---|
| 49 | * array size will be negative and this won't compile.
|
---|
| 50 | */
|
---|
| 51 | PUBLIC int (*call_vec[NR_SYS_CALLS])(message *m_ptr);
|
---|
| 52 |
|
---|
| 53 | #define map(call_nr, handler) \
|
---|
| 54 | {extern int dummy[NR_SYS_CALLS>(unsigned)(call_nr-KERNEL_CALL) ? 1:-1];} \
|
---|
| 55 | call_vec[(call_nr-KERNEL_CALL)] = (handler)
|
---|
| 56 |
|
---|
| 57 | FORWARD _PROTOTYPE( void initialize, (void));
|
---|
| 58 |
|
---|
| 59 | /*===========================================================================*
|
---|
| 60 | * sys_task *
|
---|
| 61 | *===========================================================================*/
|
---|
| 62 | PUBLIC void sys_task()
|
---|
| 63 | {
|
---|
| 64 | /* Main entry point of sys_task. Get the message and dispatch on type. */
|
---|
| 65 | static message m;
|
---|
| 66 | register int result;
|
---|
| 67 | register struct proc *caller_ptr;
|
---|
| 68 | unsigned int call_nr;
|
---|
| 69 | int s;
|
---|
| 70 |
|
---|
| 71 | /* Initialize the system task. */
|
---|
| 72 | initialize();
|
---|
| 73 |
|
---|
| 74 | while (TRUE) {
|
---|
| 75 | /* Get work. Block and wait until a request message arrives. */
|
---|
| 76 | receive(ANY, &m);
|
---|
| 77 | call_nr = (unsigned) m.m_type - KERNEL_CALL;
|
---|
| 78 | who_e = m.m_source;
|
---|
| 79 | okendpt(who_e, &who_p);
|
---|
| 80 | caller_ptr = proc_addr(who_p);
|
---|
| 81 |
|
---|
| 82 | /* See if the caller made a valid request and try to handle it. */
|
---|
| 83 | if (! (priv(caller_ptr)->s_call_mask & (1<<call_nr))) {
|
---|
| 84 | #if DEBUG_ENABLE_IPC_WARNINGS
|
---|
| 85 | kprintf("SYSTEM: request %d from %d denied.\n", call_nr,m.m_source);
|
---|
| 86 | #endif
|
---|
| 87 | result = ECALLDENIED; /* illegal message type */
|
---|
| 88 | } else if (call_nr >= NR_SYS_CALLS) { /* check call number */
|
---|
| 89 | #if DEBUG_ENABLE_IPC_WARNINGS
|
---|
| 90 | kprintf("SYSTEM: illegal request %d from %d.\n", call_nr,m.m_source);
|
---|
| 91 | #endif
|
---|
| 92 | result = EBADREQUEST; /* illegal message type */
|
---|
| 93 | }
|
---|
| 94 | else {
|
---|
| 95 | result = (*call_vec[call_nr])(&m); /* handle the system call */
|
---|
| 96 | }
|
---|
| 97 |
|
---|
| 98 | /* Send a reply, unless inhibited by a handler function. Use the kernel
|
---|
| 99 | * function lock_send() to prevent a system call trap. The destination
|
---|
| 100 | * is known to be blocked waiting for a message.
|
---|
| 101 | */
|
---|
| 102 | if (result != EDONTREPLY) {
|
---|
| 103 | m.m_type = result; /* report status of call */
|
---|
| 104 | if (OK != (s=lock_send(m.m_source, &m))) {
|
---|
| 105 | kprintf("SYSTEM, reply to %d failed: %d\n", m.m_source, s);
|
---|
| 106 | }
|
---|
| 107 | }
|
---|
| 108 | }
|
---|
| 109 | }
|
---|
| 110 |
|
---|
| 111 | /*===========================================================================*
|
---|
| 112 | * initialize *
|
---|
| 113 | *===========================================================================*/
|
---|
| 114 | PRIVATE void initialize(void)
|
---|
| 115 | {
|
---|
| 116 | register struct priv *sp;
|
---|
| 117 | int i;
|
---|
| 118 |
|
---|
| 119 | /* Initialize IRQ handler hooks. Mark all hooks available. */
|
---|
| 120 | for (i=0; i<NR_IRQ_HOOKS; i++) {
|
---|
| 121 | irq_hooks[i].proc_nr_e = NONE;
|
---|
| 122 | }
|
---|
| 123 |
|
---|
| 124 | /* Initialize all alarm timers for all processes. */
|
---|
| 125 | for (sp=BEG_PRIV_ADDR; sp < END_PRIV_ADDR; sp++) {
|
---|
| 126 | tmr_inittimer(&(sp->s_alarm_timer));
|
---|
| 127 | }
|
---|
| 128 |
|
---|
| 129 | /* Initialize the call vector to a safe default handler. Some system calls
|
---|
| 130 | * may be disabled or nonexistant. Then explicitely map known calls to their
|
---|
| 131 | * handler functions. This is done with a macro that gives a compile error
|
---|
| 132 | * if an illegal call number is used. The ordering is not important here.
|
---|
| 133 | */
|
---|
| 134 | for (i=0; i<NR_SYS_CALLS; i++) {
|
---|
| 135 | call_vec[i] = do_unused;
|
---|
| 136 | }
|
---|
| 137 |
|
---|
| 138 | /* Process management. */
|
---|
| 139 | map(SYS_FORK, do_fork); /* a process forked a new process */
|
---|
| 140 | map(SYS_EXEC, do_exec); /* update process after execute */
|
---|
| 141 | map(SYS_EXIT, do_exit); /* clean up after process exit */
|
---|
| 142 | map(SYS_NICE, do_nice); /* set scheduling priority */
|
---|
| 143 | map(SYS_PRIVCTL, do_privctl); /* system privileges control */
|
---|
| 144 | map(SYS_TRACE, do_trace); /* request a trace operation */
|
---|
| 145 |
|
---|
| 146 | /* Signal handling. */
|
---|
| 147 | map(SYS_KILL, do_kill); /* cause a process to be signaled */
|
---|
| 148 | map(SYS_GETKSIG, do_getksig); /* PM checks for pending signals */
|
---|
| 149 | map(SYS_ENDKSIG, do_endksig); /* PM finished processing signal */
|
---|
| 150 | map(SYS_SIGSEND, do_sigsend); /* start POSIX-style signal */
|
---|
| 151 | map(SYS_SIGRETURN, do_sigreturn); /* return from POSIX-style signal */
|
---|
| 152 |
|
---|
| 153 | /* Device I/O. */
|
---|
| 154 | map(SYS_IRQCTL, do_irqctl); /* interrupt control operations */
|
---|
| 155 | map(SYS_DEVIO, do_devio); /* inb, inw, inl, outb, outw, outl */
|
---|
| 156 | map(SYS_SDEVIO, do_sdevio); /* phys_insb, _insw, _outsb, _outsw */
|
---|
| 157 | map(SYS_VDEVIO, do_vdevio); /* vector with devio requests */
|
---|
| 158 | map(SYS_INT86, do_int86); /* real-mode BIOS calls */
|
---|
| 159 |
|
---|
| 160 | /* Memory management. */
|
---|
| 161 | map(SYS_NEWMAP, do_newmap); /* set up a process memory map */
|
---|
| 162 | map(SYS_SEGCTL, do_segctl); /* add segment and get selector */
|
---|
| 163 | map(SYS_MEMSET, do_memset); /* write char to memory area */
|
---|
| 164 | map(SYS_VM_SETBUF, do_vm_setbuf); /* PM passes buffer for page tables */
|
---|
| 165 | map(SYS_VM_MAP, do_vm_map); /* Map/unmap physical (device) memory */
|
---|
| 166 |
|
---|
| 167 | /* Copying. */
|
---|
| 168 | map(SYS_UMAP, do_umap); /* map virtual to physical address */
|
---|
| 169 | map(SYS_VIRCOPY, do_vircopy); /* use pure virtual addressing */
|
---|
| 170 | map(SYS_PHYSCOPY, do_physcopy); /* use physical addressing */
|
---|
| 171 | map(SYS_VIRVCOPY, do_virvcopy); /* vector with copy requests */
|
---|
| 172 | map(SYS_PHYSVCOPY, do_physvcopy); /* vector with copy requests */
|
---|
| 173 |
|
---|
| 174 | /* Clock functionality. */
|
---|
| 175 | map(SYS_TIMES, do_times); /* get uptime and process times */
|
---|
| 176 | map(SYS_SETALARM, do_setalarm); /* schedule a synchronous alarm */
|
---|
| 177 |
|
---|
| 178 | /* System control. */
|
---|
| 179 | map(SYS_ABORT, do_abort); /* abort MINIX */
|
---|
| 180 | map(SYS_GETINFO, do_getinfo); /* request system information */
|
---|
| 181 | map(SYS_IOPENABLE, do_iopenable); /* Enable I/O */
|
---|
| 182 | }
|
---|
| 183 |
|
---|
| 184 | /*===========================================================================*
|
---|
| 185 | * get_priv *
|
---|
| 186 | *===========================================================================*/
|
---|
| 187 | PUBLIC int get_priv(rc, proc_type)
|
---|
| 188 | register struct proc *rc; /* new (child) process pointer */
|
---|
| 189 | int proc_type; /* system or user process flag */
|
---|
| 190 | {
|
---|
| 191 | /* Get a privilege structure. All user processes share the same privilege
|
---|
| 192 | * structure. System processes get their own privilege structure.
|
---|
| 193 | */
|
---|
| 194 | register struct priv *sp; /* privilege structure */
|
---|
| 195 |
|
---|
| 196 | if (proc_type == SYS_PROC) { /* find a new slot */
|
---|
| 197 | for (sp = BEG_PRIV_ADDR; sp < END_PRIV_ADDR; ++sp)
|
---|
| 198 | if (sp->s_proc_nr == NONE && sp->s_id != USER_PRIV_ID) break;
|
---|
| 199 | if (sp->s_proc_nr != NONE) return(ENOSPC);
|
---|
| 200 | rc->p_priv = sp; /* assign new slot */
|
---|
| 201 | rc->p_priv->s_proc_nr = proc_nr(rc); /* set association */
|
---|
| 202 | rc->p_priv->s_flags = SYS_PROC; /* mark as privileged */
|
---|
| 203 | } else {
|
---|
| 204 | rc->p_priv = &priv[USER_PRIV_ID]; /* use shared slot */
|
---|
| 205 | rc->p_priv->s_proc_nr = INIT_PROC_NR; /* set association */
|
---|
| 206 | rc->p_priv->s_flags = 0; /* no initial flags */
|
---|
| 207 | }
|
---|
| 208 | return(OK);
|
---|
| 209 | }
|
---|
| 210 |
|
---|
| 211 | /*===========================================================================*
|
---|
| 212 | * get_randomness *
|
---|
| 213 | *===========================================================================*/
|
---|
| 214 | PUBLIC void get_randomness(source)
|
---|
| 215 | int source;
|
---|
| 216 | {
|
---|
| 217 | /* On machines with the RDTSC (cycle counter read instruction - pentium
|
---|
| 218 | * and up), use that for high-resolution raw entropy gathering. Otherwise,
|
---|
| 219 | * use the realtime clock (tick resolution).
|
---|
| 220 | *
|
---|
| 221 | * Unfortunately this test is run-time - we don't want to bother with
|
---|
| 222 | * compiling different kernels for different machines.
|
---|
| 223 | *
|
---|
| 224 | * On machines without RDTSC, we use read_clock().
|
---|
| 225 | */
|
---|
| 226 | int r_next;
|
---|
| 227 | unsigned long tsc_high, tsc_low;
|
---|
| 228 |
|
---|
| 229 | source %= RANDOM_SOURCES;
|
---|
| 230 | r_next= krandom.bin[source].r_next;
|
---|
| 231 | if (machine.processor > 486) {
|
---|
| 232 | read_tsc(&tsc_high, &tsc_low);
|
---|
| 233 | krandom.bin[source].r_buf[r_next] = tsc_low;
|
---|
| 234 | } else {
|
---|
| 235 | krandom.bin[source].r_buf[r_next] = read_clock();
|
---|
| 236 | }
|
---|
| 237 | if (krandom.bin[source].r_size < RANDOM_ELEMENTS) {
|
---|
| 238 | krandom.bin[source].r_size ++;
|
---|
| 239 | }
|
---|
| 240 | krandom.bin[source].r_next = (r_next + 1 ) % RANDOM_ELEMENTS;
|
---|
| 241 | }
|
---|
| 242 |
|
---|
| 243 | /*===========================================================================*
|
---|
| 244 | * send_sig *
|
---|
| 245 | *===========================================================================*/
|
---|
| 246 | PUBLIC void send_sig(int proc_nr, int sig_nr)
|
---|
| 247 | {
|
---|
| 248 | /* Notify a system process about a signal. This is straightforward. Simply
|
---|
| 249 | * set the signal that is to be delivered in the pending signals map and
|
---|
| 250 | * send a notification with source SYSTEM.
|
---|
| 251 | *
|
---|
| 252 | * Process number is verified to avoid writing in random places, but we
|
---|
| 253 | * don't kprintf() or panic() because that causes send_sig() invocations.
|
---|
| 254 | */
|
---|
| 255 | register struct proc *rp;
|
---|
| 256 | static int n;
|
---|
| 257 |
|
---|
| 258 | if(!isokprocn(proc_nr) || isemptyn(proc_nr))
|
---|
| 259 | return;
|
---|
| 260 |
|
---|
| 261 | rp = proc_addr(proc_nr);
|
---|
| 262 | sigaddset(&priv(rp)->s_sig_pending, sig_nr);
|
---|
| 263 | lock_notify(SYSTEM, rp->p_endpoint);
|
---|
| 264 | }
|
---|
| 265 |
|
---|
| 266 | /*===========================================================================*
|
---|
| 267 | * cause_sig *
|
---|
| 268 | *===========================================================================*/
|
---|
| 269 | PUBLIC void cause_sig(proc_nr, sig_nr)
|
---|
| 270 | int proc_nr; /* process to be signalled */
|
---|
| 271 | int sig_nr; /* signal to be sent, 1 to _NSIG */
|
---|
| 272 | {
|
---|
| 273 | /* A system process wants to send a signal to a process. Examples are:
|
---|
| 274 | * - HARDWARE wanting to cause a SIGSEGV after a CPU exception
|
---|
| 275 | * - TTY wanting to cause SIGINT upon getting a DEL
|
---|
| 276 | * - FS wanting to cause SIGPIPE for a broken pipe
|
---|
| 277 | * Signals are handled by sending a message to PM. This function handles the
|
---|
| 278 | * signals and makes sure the PM gets them by sending a notification. The
|
---|
| 279 | * process being signaled is blocked while PM has not finished all signals
|
---|
| 280 | * for it.
|
---|
| 281 | * Race conditions between calls to this function and the system calls that
|
---|
| 282 | * process pending kernel signals cannot exist. Signal related functions are
|
---|
| 283 | * only called when a user process causes a CPU exception and from the kernel
|
---|
| 284 | * process level, which runs to completion.
|
---|
| 285 | */
|
---|
| 286 | register struct proc *rp;
|
---|
| 287 |
|
---|
| 288 | /* Check if the signal is already pending. Process it otherwise. */
|
---|
| 289 | rp = proc_addr(proc_nr);
|
---|
| 290 | if (! sigismember(&rp->p_pending, sig_nr)) {
|
---|
| 291 | sigaddset(&rp->p_pending, sig_nr);
|
---|
| 292 | if (! (rp->p_rts_flags & SIGNALED)) { /* other pending */
|
---|
| 293 | if (rp->p_rts_flags == 0) lock_dequeue(rp); /* make not ready */
|
---|
| 294 | rp->p_rts_flags |= SIGNALED | SIG_PENDING; /* update flags */
|
---|
| 295 | send_sig(PM_PROC_NR, SIGKSIG);
|
---|
| 296 | }
|
---|
| 297 | }
|
---|
| 298 | }
|
---|
| 299 |
|
---|
| 300 | /*===========================================================================*
|
---|
| 301 | * umap_bios *
|
---|
| 302 | *===========================================================================*/
|
---|
| 303 | PUBLIC phys_bytes umap_bios(rp, vir_addr, bytes)
|
---|
| 304 | register struct proc *rp; /* pointer to proc table entry for process */
|
---|
| 305 | vir_bytes vir_addr; /* virtual address in BIOS segment */
|
---|
| 306 | vir_bytes bytes; /* # of bytes to be copied */
|
---|
| 307 | {
|
---|
| 308 | /* Calculate the physical memory address at the BIOS. Note: currently, BIOS
|
---|
| 309 | * address zero (the first BIOS interrupt vector) is not considered, as an
|
---|
| 310 | * error here, but since the physical address will be zero as well, the
|
---|
| 311 | * calling function will think an error occurred. This is not a problem,
|
---|
| 312 | * since no one uses the first BIOS interrupt vector.
|
---|
| 313 | */
|
---|
| 314 |
|
---|
| 315 | /* Check all acceptable ranges. */
|
---|
| 316 | if (vir_addr >= BIOS_MEM_BEGIN && vir_addr + bytes <= BIOS_MEM_END)
|
---|
| 317 | return (phys_bytes) vir_addr;
|
---|
| 318 | else if (vir_addr >= BASE_MEM_TOP && vir_addr + bytes <= UPPER_MEM_END)
|
---|
| 319 | return (phys_bytes) vir_addr;
|
---|
| 320 |
|
---|
| 321 | #if DEAD_CODE /* brutal fix, if the above is too restrictive */
|
---|
| 322 | if (vir_addr >= BIOS_MEM_BEGIN && vir_addr + bytes <= UPPER_MEM_END)
|
---|
| 323 | return (phys_bytes) vir_addr;
|
---|
| 324 | #endif
|
---|
| 325 |
|
---|
| 326 | kprintf("Warning, error in umap_bios, virtual address 0x%x\n", vir_addr);
|
---|
| 327 | return 0;
|
---|
| 328 | }
|
---|
| 329 |
|
---|
| 330 | /*===========================================================================*
|
---|
| 331 | * umap_local *
|
---|
| 332 | *===========================================================================*/
|
---|
| 333 | PUBLIC phys_bytes umap_local(rp, seg, vir_addr, bytes)
|
---|
| 334 | register struct proc *rp; /* pointer to proc table entry for process */
|
---|
| 335 | int seg; /* T, D, or S segment */
|
---|
| 336 | vir_bytes vir_addr; /* virtual address in bytes within the seg */
|
---|
| 337 | vir_bytes bytes; /* # of bytes to be copied */
|
---|
| 338 | {
|
---|
| 339 | /* Calculate the physical memory address for a given virtual address. */
|
---|
| 340 | vir_clicks vc; /* the virtual address in clicks */
|
---|
| 341 | phys_bytes pa; /* intermediate variables as phys_bytes */
|
---|
| 342 | #if (CHIP == INTEL)
|
---|
| 343 | phys_bytes seg_base;
|
---|
| 344 | #endif
|
---|
| 345 |
|
---|
| 346 | /* If 'seg' is D it could really be S and vice versa. T really means T.
|
---|
| 347 | * If the virtual address falls in the gap, it causes a problem. On the
|
---|
| 348 | * 8088 it is probably a legal stack reference, since "stackfaults" are
|
---|
| 349 | * not detected by the hardware. On 8088s, the gap is called S and
|
---|
| 350 | * accepted, but on other machines it is called D and rejected.
|
---|
| 351 | * The Atari ST behaves like the 8088 in this respect.
|
---|
| 352 | */
|
---|
| 353 |
|
---|
| 354 | if (bytes <= 0) return( (phys_bytes) 0);
|
---|
| 355 | if (vir_addr + bytes <= vir_addr) return 0; /* overflow */
|
---|
| 356 | vc = (vir_addr + bytes - 1) >> CLICK_SHIFT; /* last click of data */
|
---|
| 357 |
|
---|
| 358 | #if (CHIP == INTEL) || (CHIP == M68000)
|
---|
| 359 | if (seg != T)
|
---|
| 360 | seg = (vc < rp->p_memmap[D].mem_vir + rp->p_memmap[D].mem_len ? D : S);
|
---|
| 361 | #else
|
---|
| 362 | if (seg != T)
|
---|
| 363 | seg = (vc < rp->p_memmap[S].mem_vir ? D : S);
|
---|
| 364 | #endif
|
---|
| 365 |
|
---|
| 366 | if ((vir_addr>>CLICK_SHIFT) >= rp->p_memmap[seg].mem_vir +
|
---|
| 367 | rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 );
|
---|
| 368 |
|
---|
| 369 | if (vc >= rp->p_memmap[seg].mem_vir +
|
---|
| 370 | rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 );
|
---|
| 371 |
|
---|
| 372 | #if (CHIP == INTEL)
|
---|
| 373 | seg_base = (phys_bytes) rp->p_memmap[seg].mem_phys;
|
---|
| 374 | seg_base = seg_base << CLICK_SHIFT; /* segment origin in bytes */
|
---|
| 375 | #endif
|
---|
| 376 | pa = (phys_bytes) vir_addr;
|
---|
| 377 | #if (CHIP != M68000)
|
---|
| 378 | pa -= rp->p_memmap[seg].mem_vir << CLICK_SHIFT;
|
---|
| 379 | return(seg_base + pa);
|
---|
| 380 | #endif
|
---|
| 381 | #if (CHIP == M68000)
|
---|
| 382 | pa -= (phys_bytes)rp->p_memmap[seg].mem_vir << CLICK_SHIFT;
|
---|
| 383 | pa += (phys_bytes)rp->p_memmap[seg].mem_phys << CLICK_SHIFT;
|
---|
| 384 | return(pa);
|
---|
| 385 | #endif
|
---|
| 386 | }
|
---|
| 387 |
|
---|
| 388 | /*===========================================================================*
|
---|
| 389 | * umap_remote *
|
---|
| 390 | *===========================================================================*/
|
---|
| 391 | PUBLIC phys_bytes umap_remote(rp, seg, vir_addr, bytes)
|
---|
| 392 | register struct proc *rp; /* pointer to proc table entry for process */
|
---|
| 393 | int seg; /* index of remote segment */
|
---|
| 394 | vir_bytes vir_addr; /* virtual address in bytes within the seg */
|
---|
| 395 | vir_bytes bytes; /* # of bytes to be copied */
|
---|
| 396 | {
|
---|
| 397 | /* Calculate the physical memory address for a given virtual address. */
|
---|
| 398 | struct far_mem *fm;
|
---|
| 399 |
|
---|
| 400 | if (bytes <= 0) return( (phys_bytes) 0);
|
---|
| 401 | if (seg < 0 || seg >= NR_REMOTE_SEGS) return( (phys_bytes) 0);
|
---|
| 402 |
|
---|
| 403 | fm = &rp->p_priv->s_farmem[seg];
|
---|
| 404 | if (! fm->in_use) return( (phys_bytes) 0);
|
---|
| 405 | if (vir_addr + bytes > fm->mem_len) return( (phys_bytes) 0);
|
---|
| 406 |
|
---|
| 407 | return(fm->mem_phys + (phys_bytes) vir_addr);
|
---|
| 408 | }
|
---|
| 409 |
|
---|
| 410 | /*===========================================================================*
|
---|
| 411 | * virtual_copy *
|
---|
| 412 | *===========================================================================*/
|
---|
| 413 | PUBLIC int virtual_copy(src_addr, dst_addr, bytes)
|
---|
| 414 | struct vir_addr *src_addr; /* source virtual address */
|
---|
| 415 | struct vir_addr *dst_addr; /* destination virtual address */
|
---|
| 416 | vir_bytes bytes; /* # of bytes to copy */
|
---|
| 417 | {
|
---|
| 418 | /* Copy bytes from virtual address src_addr to virtual address dst_addr.
|
---|
| 419 | * Virtual addresses can be in ABS, LOCAL_SEG, REMOTE_SEG, or BIOS_SEG.
|
---|
| 420 | */
|
---|
| 421 | struct vir_addr *vir_addr[2]; /* virtual source and destination address */
|
---|
| 422 | phys_bytes phys_addr[2]; /* absolute source and destination */
|
---|
| 423 | int seg_index;
|
---|
| 424 | int i;
|
---|
| 425 |
|
---|
| 426 | /* Check copy count. */
|
---|
| 427 | if (bytes <= 0) return(EDOM);
|
---|
| 428 |
|
---|
| 429 | /* Do some more checks and map virtual addresses to physical addresses. */
|
---|
| 430 | vir_addr[_SRC_] = src_addr;
|
---|
| 431 | vir_addr[_DST_] = dst_addr;
|
---|
| 432 | for (i=_SRC_; i<=_DST_; i++) {
|
---|
| 433 | int proc_nr, type;
|
---|
| 434 | struct proc *p;
|
---|
| 435 |
|
---|
| 436 | type = vir_addr[i]->segment & SEGMENT_TYPE;
|
---|
| 437 | if(type != PHYS_SEG && isokendpt(vir_addr[i]->proc_nr_e, &proc_nr))
|
---|
| 438 | p = proc_addr(proc_nr);
|
---|
| 439 | else
|
---|
| 440 | p = NULL;
|
---|
| 441 |
|
---|
| 442 | /* Get physical address. */
|
---|
| 443 | switch(type) {
|
---|
| 444 | case LOCAL_SEG:
|
---|
| 445 | if(!p) return EDEADSRCDST;
|
---|
| 446 | seg_index = vir_addr[i]->segment & SEGMENT_INDEX;
|
---|
| 447 | phys_addr[i] = umap_local(p, seg_index, vir_addr[i]->offset, bytes);
|
---|
| 448 | break;
|
---|
| 449 | case REMOTE_SEG:
|
---|
| 450 | if(!p) return EDEADSRCDST;
|
---|
| 451 | seg_index = vir_addr[i]->segment & SEGMENT_INDEX;
|
---|
| 452 | phys_addr[i] = umap_remote(p, seg_index, vir_addr[i]->offset, bytes);
|
---|
| 453 | break;
|
---|
| 454 | case BIOS_SEG:
|
---|
| 455 | if(!p) return EDEADSRCDST;
|
---|
| 456 | phys_addr[i] = umap_bios(p, vir_addr[i]->offset, bytes );
|
---|
| 457 | break;
|
---|
| 458 | case PHYS_SEG:
|
---|
| 459 | phys_addr[i] = vir_addr[i]->offset;
|
---|
| 460 | break;
|
---|
| 461 | default:
|
---|
| 462 | return(EINVAL);
|
---|
| 463 | }
|
---|
| 464 |
|
---|
| 465 | /* Check if mapping succeeded. */
|
---|
| 466 | if (phys_addr[i] <= 0 && vir_addr[i]->segment != PHYS_SEG)
|
---|
| 467 | return(EFAULT);
|
---|
| 468 | }
|
---|
| 469 |
|
---|
| 470 | /* Now copy bytes between physical addresseses. */
|
---|
| 471 | phys_copy(phys_addr[_SRC_], phys_addr[_DST_], (phys_bytes) bytes);
|
---|
| 472 | return(OK);
|
---|
| 473 | }
|
---|
| 474 |
|
---|
| 475 |
|
---|
| 476 | /*===========================================================================*
|
---|
| 477 | * clear_endpoint *
|
---|
| 478 | *===========================================================================*/
|
---|
| 479 | PUBLIC void clear_endpoint(rc)
|
---|
| 480 | register struct proc *rc; /* slot of process to clean up */
|
---|
| 481 | {
|
---|
| 482 | register struct proc *rp; /* iterate over process table */
|
---|
| 483 | register struct proc **xpp; /* iterate over caller queue */
|
---|
| 484 | int i;
|
---|
| 485 | int sys_id;
|
---|
| 486 |
|
---|
| 487 | if(isemptyp(rc)) panic("clear_proc: empty process", proc_nr(rc));
|
---|
| 488 |
|
---|
| 489 | /* Make sure that the exiting process is no longer scheduled. */
|
---|
| 490 | if (rc->p_rts_flags == 0) lock_dequeue(rc);
|
---|
| 491 | rc->p_rts_flags |= NO_ENDPOINT;
|
---|
| 492 |
|
---|
| 493 | /* If the process happens to be queued trying to send a
|
---|
| 494 | * message, then it must be removed from the message queues.
|
---|
| 495 | */
|
---|
| 496 | if (rc->p_rts_flags & SENDING) {
|
---|
| 497 | int target_proc;
|
---|
| 498 |
|
---|
| 499 | okendpt(rc->p_sendto_e, &target_proc);
|
---|
| 500 | xpp = &proc_addr(target_proc)->p_caller_q; /* destination's queue */
|
---|
| 501 | while (*xpp != NIL_PROC) { /* check entire queue */
|
---|
| 502 | if (*xpp == rc) { /* process is on the queue */
|
---|
| 503 | *xpp = (*xpp)->p_q_link; /* replace by next process */
|
---|
| 504 | #if DEBUG_ENABLE_IPC_WARNINGS
|
---|
| 505 | kprintf("Proc %d removed from queue at %d\n",
|
---|
| 506 | proc_nr(rc), rc->p_sendto_e);
|
---|
| 507 | #endif
|
---|
| 508 | break; /* can only be queued once */
|
---|
| 509 | }
|
---|
| 510 | xpp = &(*xpp)->p_q_link; /* proceed to next queued */
|
---|
| 511 | }
|
---|
| 512 | rc->p_rts_flags &= ~SENDING;
|
---|
| 513 | }
|
---|
| 514 | rc->p_rts_flags &= ~RECEIVING;
|
---|
| 515 |
|
---|
| 516 | /* Likewise, if another process was sending or receive a message to or from
|
---|
| 517 | * the exiting process, it must be alerted that process no longer is alive.
|
---|
| 518 | * Check all processes.
|
---|
| 519 | */
|
---|
| 520 | for (rp = BEG_PROC_ADDR; rp < END_PROC_ADDR; rp++) {
|
---|
| 521 | if(isemptyp(rp))
|
---|
| 522 | continue;
|
---|
| 523 |
|
---|
| 524 | /* Unset pending notification bits. */
|
---|
| 525 | unset_sys_bit(priv(rp)->s_notify_pending, priv(rc)->s_id);
|
---|
| 526 |
|
---|
| 527 | /* Check if process is receiving from exiting process. */
|
---|
| 528 | if ((rp->p_rts_flags & RECEIVING) && rp->p_getfrom_e == rc->p_endpoint) {
|
---|
| 529 | rp->p_reg.retreg = ESRCDIED; /* report source died */
|
---|
| 530 | rp->p_rts_flags &= ~RECEIVING; /* no longer receiving */
|
---|
| 531 | #if DEBUG_ENABLE_IPC_WARNINGS
|
---|
| 532 | kprintf("Proc %d receive dead src %d\n", proc_nr(rp), proc_nr(rc));
|
---|
| 533 | #endif
|
---|
| 534 | if (rp->p_rts_flags == 0) lock_enqueue(rp);/* let process run again */
|
---|
| 535 | }
|
---|
| 536 | if ((rp->p_rts_flags & SENDING) && rp->p_sendto_e == rc->p_endpoint) {
|
---|
| 537 | rp->p_reg.retreg = EDSTDIED; /* report destination died */
|
---|
| 538 | rp->p_rts_flags &= ~SENDING; /* no longer sending */
|
---|
| 539 | #if DEBUG_ENABLE_IPC_WARNINGS
|
---|
| 540 | kprintf("Proc %d send dead dst %d\n", proc_nr(rp), proc_nr(rc));
|
---|
| 541 | #endif
|
---|
| 542 | if (rp->p_rts_flags == 0) lock_enqueue(rp);/* let process run again */
|
---|
| 543 | }
|
---|
| 544 | }
|
---|
| 545 | }
|
---|
| 546 |
|
---|
| 547 |
|
---|