1 | /* This task handles the interface between the kernel and user-level servers.
|
---|
2 | * System services can be accessed by doing a system call. System calls are
|
---|
3 | * transformed into request messages, which are handled by this task. By
|
---|
4 | * convention, a sys_call() is transformed in a SYS_CALL request message that
|
---|
5 | * is handled in a function named do_call().
|
---|
6 | *
|
---|
7 | * A private call vector is used to map all system calls to the functions that
|
---|
8 | * handle them. The actual handler functions are contained in separate files
|
---|
9 | * to keep this file clean. The call vector is used in the system task's main
|
---|
10 | * loop to handle all incoming requests.
|
---|
11 | *
|
---|
12 | * In addition to the main sys_task() entry point, which starts the main loop,
|
---|
13 | * there are several other minor entry points:
|
---|
14 | * get_priv: assign privilege structure to user or system process
|
---|
15 | * send_sig: send a signal directly to a system process
|
---|
16 | * cause_sig: take action to cause a signal to occur via PM
|
---|
17 | * umap_local: map virtual address in LOCAL_SEG to physical
|
---|
18 | * umap_remote: map virtual address in REMOTE_SEG to physical
|
---|
19 | * umap_bios: map virtual address in BIOS_SEG to physical
|
---|
20 | * virtual_copy: copy bytes from one virtual address to another
|
---|
21 | * get_randomness: accumulate randomness in a buffer
|
---|
22 | * clear_endpoint: remove a process' ability to send and receive messages
|
---|
23 | *
|
---|
24 | * Changes:
|
---|
25 | * Aug 04, 2005 check if system call is allowed (Jorrit N. Herder)
|
---|
26 | * Jul 20, 2005 send signal to services with message (Jorrit N. Herder)
|
---|
27 | * Jan 15, 2005 new, generalized virtual copy function (Jorrit N. Herder)
|
---|
28 | * Oct 10, 2004 dispatch system calls from call vector (Jorrit N. Herder)
|
---|
29 | * Sep 30, 2004 source code documentation updated (Jorrit N. Herder)
|
---|
30 | */
|
---|
31 |
|
---|
32 | #include "debug.h"
|
---|
33 | #include "kernel.h"
|
---|
34 | #include "system.h"
|
---|
35 | #include <stdlib.h>
|
---|
36 | #include <signal.h>
|
---|
37 | #include <unistd.h>
|
---|
38 | #include <sys/sigcontext.h>
|
---|
39 | #include <minix/endpoint.h>
|
---|
40 | #if (CHIP == INTEL)
|
---|
41 | #include <ibm/memory.h>
|
---|
42 | #include "protect.h"
|
---|
43 | #endif
|
---|
44 |
|
---|
45 | /* Declaration of the call vector that defines the mapping of system calls
|
---|
46 | * to handler functions. The vector is initialized in sys_init() with map(),
|
---|
47 | * which makes sure the system call numbers are ok. No space is allocated,
|
---|
48 | * because the dummy is declared extern. If an illegal call is given, the
|
---|
49 | * array size will be negative and this won't compile.
|
---|
50 | */
|
---|
51 | PUBLIC int (*call_vec[NR_SYS_CALLS])(message *m_ptr);
|
---|
52 |
|
---|
53 | #define map(call_nr, handler) \
|
---|
54 | {extern int dummy[NR_SYS_CALLS>(unsigned)(call_nr-KERNEL_CALL) ? 1:-1];} \
|
---|
55 | call_vec[(call_nr-KERNEL_CALL)] = (handler)
|
---|
56 |
|
---|
57 | FORWARD _PROTOTYPE( void initialize, (void));
|
---|
58 |
|
---|
59 | /*===========================================================================*
|
---|
60 | * sys_task *
|
---|
61 | *===========================================================================*/
|
---|
62 | PUBLIC void sys_task()
|
---|
63 | {
|
---|
64 | /* Main entry point of sys_task. Get the message and dispatch on type. */
|
---|
65 | static message m;
|
---|
66 | register int result;
|
---|
67 | register struct proc *caller_ptr;
|
---|
68 | unsigned int call_nr;
|
---|
69 | int s;
|
---|
70 |
|
---|
71 | /* Initialize the system task. */
|
---|
72 | initialize();
|
---|
73 |
|
---|
74 | while (TRUE) {
|
---|
75 | /* Get work. Block and wait until a request message arrives. */
|
---|
76 | receive(ANY, &m);
|
---|
77 | call_nr = (unsigned) m.m_type - KERNEL_CALL;
|
---|
78 | who_e = m.m_source;
|
---|
79 | okendpt(who_e, &who_p);
|
---|
80 | caller_ptr = proc_addr(who_p);
|
---|
81 |
|
---|
82 | /* See if the caller made a valid request and try to handle it. */
|
---|
83 | if (! (priv(caller_ptr)->s_call_mask & (1<<call_nr))) {
|
---|
84 | #if DEBUG_ENABLE_IPC_WARNINGS
|
---|
85 | kprintf("SYSTEM: request %d from %d denied.\n", call_nr,m.m_source);
|
---|
86 | #endif
|
---|
87 | result = ECALLDENIED; /* illegal message type */
|
---|
88 | } else if (call_nr >= NR_SYS_CALLS) { /* check call number */
|
---|
89 | #if DEBUG_ENABLE_IPC_WARNINGS
|
---|
90 | kprintf("SYSTEM: illegal request %d from %d.\n", call_nr,m.m_source);
|
---|
91 | #endif
|
---|
92 | result = EBADREQUEST; /* illegal message type */
|
---|
93 | }
|
---|
94 | else {
|
---|
95 | result = (*call_vec[call_nr])(&m); /* handle the system call */
|
---|
96 | }
|
---|
97 |
|
---|
98 | /* Send a reply, unless inhibited by a handler function. Use the kernel
|
---|
99 | * function lock_send() to prevent a system call trap. The destination
|
---|
100 | * is known to be blocked waiting for a message.
|
---|
101 | */
|
---|
102 | if (result != EDONTREPLY) {
|
---|
103 | m.m_type = result; /* report status of call */
|
---|
104 | if (OK != (s=lock_send(m.m_source, &m))) {
|
---|
105 | kprintf("SYSTEM, reply to %d failed: %d\n", m.m_source, s);
|
---|
106 | }
|
---|
107 | }
|
---|
108 | }
|
---|
109 | }
|
---|
110 |
|
---|
111 | /*===========================================================================*
|
---|
112 | * initialize *
|
---|
113 | *===========================================================================*/
|
---|
114 | PRIVATE void initialize(void)
|
---|
115 | {
|
---|
116 | register struct priv *sp;
|
---|
117 | int i;
|
---|
118 |
|
---|
119 | /* Initialize IRQ handler hooks. Mark all hooks available. */
|
---|
120 | for (i=0; i<NR_IRQ_HOOKS; i++) {
|
---|
121 | irq_hooks[i].proc_nr_e = NONE;
|
---|
122 | }
|
---|
123 |
|
---|
124 | /* Initialize all alarm timers for all processes. */
|
---|
125 | for (sp=BEG_PRIV_ADDR; sp < END_PRIV_ADDR; sp++) {
|
---|
126 | tmr_inittimer(&(sp->s_alarm_timer));
|
---|
127 | }
|
---|
128 |
|
---|
129 | /* Initialize the call vector to a safe default handler. Some system calls
|
---|
130 | * may be disabled or nonexistant. Then explicitely map known calls to their
|
---|
131 | * handler functions. This is done with a macro that gives a compile error
|
---|
132 | * if an illegal call number is used. The ordering is not important here.
|
---|
133 | */
|
---|
134 | for (i=0; i<NR_SYS_CALLS; i++) {
|
---|
135 | call_vec[i] = do_unused;
|
---|
136 | }
|
---|
137 |
|
---|
138 | /* Process management. */
|
---|
139 | map(SYS_FORK, do_fork); /* a process forked a new process */
|
---|
140 | map(SYS_EXEC, do_exec); /* update process after execute */
|
---|
141 | map(SYS_EXIT, do_exit); /* clean up after process exit */
|
---|
142 | map(SYS_NICE, do_nice); /* set scheduling priority */
|
---|
143 | map(SYS_PRIVCTL, do_privctl); /* system privileges control */
|
---|
144 | map(SYS_TRACE, do_trace); /* request a trace operation */
|
---|
145 |
|
---|
146 | /* Signal handling. */
|
---|
147 | map(SYS_KILL, do_kill); /* cause a process to be signaled */
|
---|
148 | map(SYS_GETKSIG, do_getksig); /* PM checks for pending signals */
|
---|
149 | map(SYS_ENDKSIG, do_endksig); /* PM finished processing signal */
|
---|
150 | map(SYS_SIGSEND, do_sigsend); /* start POSIX-style signal */
|
---|
151 | map(SYS_SIGRETURN, do_sigreturn); /* return from POSIX-style signal */
|
---|
152 |
|
---|
153 | /* Device I/O. */
|
---|
154 | map(SYS_IRQCTL, do_irqctl); /* interrupt control operations */
|
---|
155 | map(SYS_DEVIO, do_devio); /* inb, inw, inl, outb, outw, outl */
|
---|
156 | map(SYS_SDEVIO, do_sdevio); /* phys_insb, _insw, _outsb, _outsw */
|
---|
157 | map(SYS_VDEVIO, do_vdevio); /* vector with devio requests */
|
---|
158 | map(SYS_INT86, do_int86); /* real-mode BIOS calls */
|
---|
159 |
|
---|
160 | /* Memory management. */
|
---|
161 | map(SYS_NEWMAP, do_newmap); /* set up a process memory map */
|
---|
162 | map(SYS_SEGCTL, do_segctl); /* add segment and get selector */
|
---|
163 | map(SYS_MEMSET, do_memset); /* write char to memory area */
|
---|
164 | map(SYS_VM_SETBUF, do_vm_setbuf); /* PM passes buffer for page tables */
|
---|
165 | map(SYS_VM_MAP, do_vm_map); /* Map/unmap physical (device) memory */
|
---|
166 |
|
---|
167 | /* Copying. */
|
---|
168 | map(SYS_UMAP, do_umap); /* map virtual to physical address */
|
---|
169 | map(SYS_VIRCOPY, do_vircopy); /* use pure virtual addressing */
|
---|
170 | map(SYS_PHYSCOPY, do_physcopy); /* use physical addressing */
|
---|
171 | map(SYS_VIRVCOPY, do_virvcopy); /* vector with copy requests */
|
---|
172 | map(SYS_PHYSVCOPY, do_physvcopy); /* vector with copy requests */
|
---|
173 |
|
---|
174 | /* Clock functionality. */
|
---|
175 | map(SYS_TIMES, do_times); /* get uptime and process times */
|
---|
176 | map(SYS_SETALARM, do_setalarm); /* schedule a synchronous alarm */
|
---|
177 |
|
---|
178 | /* System control. */
|
---|
179 | map(SYS_ABORT, do_abort); /* abort MINIX */
|
---|
180 | map(SYS_GETINFO, do_getinfo); /* request system information */
|
---|
181 | map(SYS_IOPENABLE, do_iopenable); /* Enable I/O */
|
---|
182 | }
|
---|
183 |
|
---|
184 | /*===========================================================================*
|
---|
185 | * get_priv *
|
---|
186 | *===========================================================================*/
|
---|
187 | PUBLIC int get_priv(rc, proc_type)
|
---|
188 | register struct proc *rc; /* new (child) process pointer */
|
---|
189 | int proc_type; /* system or user process flag */
|
---|
190 | {
|
---|
191 | /* Get a privilege structure. All user processes share the same privilege
|
---|
192 | * structure. System processes get their own privilege structure.
|
---|
193 | */
|
---|
194 | register struct priv *sp; /* privilege structure */
|
---|
195 |
|
---|
196 | if (proc_type == SYS_PROC) { /* find a new slot */
|
---|
197 | for (sp = BEG_PRIV_ADDR; sp < END_PRIV_ADDR; ++sp)
|
---|
198 | if (sp->s_proc_nr == NONE && sp->s_id != USER_PRIV_ID) break;
|
---|
199 | if (sp->s_proc_nr != NONE) return(ENOSPC);
|
---|
200 | rc->p_priv = sp; /* assign new slot */
|
---|
201 | rc->p_priv->s_proc_nr = proc_nr(rc); /* set association */
|
---|
202 | rc->p_priv->s_flags = SYS_PROC; /* mark as privileged */
|
---|
203 | } else {
|
---|
204 | rc->p_priv = &priv[USER_PRIV_ID]; /* use shared slot */
|
---|
205 | rc->p_priv->s_proc_nr = INIT_PROC_NR; /* set association */
|
---|
206 | rc->p_priv->s_flags = 0; /* no initial flags */
|
---|
207 | }
|
---|
208 | return(OK);
|
---|
209 | }
|
---|
210 |
|
---|
211 | /*===========================================================================*
|
---|
212 | * get_randomness *
|
---|
213 | *===========================================================================*/
|
---|
214 | PUBLIC void get_randomness(source)
|
---|
215 | int source;
|
---|
216 | {
|
---|
217 | /* On machines with the RDTSC (cycle counter read instruction - pentium
|
---|
218 | * and up), use that for high-resolution raw entropy gathering. Otherwise,
|
---|
219 | * use the realtime clock (tick resolution).
|
---|
220 | *
|
---|
221 | * Unfortunately this test is run-time - we don't want to bother with
|
---|
222 | * compiling different kernels for different machines.
|
---|
223 | *
|
---|
224 | * On machines without RDTSC, we use read_clock().
|
---|
225 | */
|
---|
226 | int r_next;
|
---|
227 | unsigned long tsc_high, tsc_low;
|
---|
228 |
|
---|
229 | source %= RANDOM_SOURCES;
|
---|
230 | r_next= krandom.bin[source].r_next;
|
---|
231 | if (machine.processor > 486) {
|
---|
232 | read_tsc(&tsc_high, &tsc_low);
|
---|
233 | krandom.bin[source].r_buf[r_next] = tsc_low;
|
---|
234 | } else {
|
---|
235 | krandom.bin[source].r_buf[r_next] = read_clock();
|
---|
236 | }
|
---|
237 | if (krandom.bin[source].r_size < RANDOM_ELEMENTS) {
|
---|
238 | krandom.bin[source].r_size ++;
|
---|
239 | }
|
---|
240 | krandom.bin[source].r_next = (r_next + 1 ) % RANDOM_ELEMENTS;
|
---|
241 | }
|
---|
242 |
|
---|
243 | /*===========================================================================*
|
---|
244 | * send_sig *
|
---|
245 | *===========================================================================*/
|
---|
246 | PUBLIC void send_sig(int proc_nr, int sig_nr)
|
---|
247 | {
|
---|
248 | /* Notify a system process about a signal. This is straightforward. Simply
|
---|
249 | * set the signal that is to be delivered in the pending signals map and
|
---|
250 | * send a notification with source SYSTEM.
|
---|
251 | *
|
---|
252 | * Process number is verified to avoid writing in random places, but we
|
---|
253 | * don't kprintf() or panic() because that causes send_sig() invocations.
|
---|
254 | */
|
---|
255 | register struct proc *rp;
|
---|
256 | static int n;
|
---|
257 |
|
---|
258 | if(!isokprocn(proc_nr) || isemptyn(proc_nr))
|
---|
259 | return;
|
---|
260 |
|
---|
261 | rp = proc_addr(proc_nr);
|
---|
262 | sigaddset(&priv(rp)->s_sig_pending, sig_nr);
|
---|
263 | lock_notify(SYSTEM, rp->p_endpoint);
|
---|
264 | }
|
---|
265 |
|
---|
266 | /*===========================================================================*
|
---|
267 | * cause_sig *
|
---|
268 | *===========================================================================*/
|
---|
269 | PUBLIC void cause_sig(proc_nr, sig_nr)
|
---|
270 | int proc_nr; /* process to be signalled */
|
---|
271 | int sig_nr; /* signal to be sent, 1 to _NSIG */
|
---|
272 | {
|
---|
273 | /* A system process wants to send a signal to a process. Examples are:
|
---|
274 | * - HARDWARE wanting to cause a SIGSEGV after a CPU exception
|
---|
275 | * - TTY wanting to cause SIGINT upon getting a DEL
|
---|
276 | * - FS wanting to cause SIGPIPE for a broken pipe
|
---|
277 | * Signals are handled by sending a message to PM. This function handles the
|
---|
278 | * signals and makes sure the PM gets them by sending a notification. The
|
---|
279 | * process being signaled is blocked while PM has not finished all signals
|
---|
280 | * for it.
|
---|
281 | * Race conditions between calls to this function and the system calls that
|
---|
282 | * process pending kernel signals cannot exist. Signal related functions are
|
---|
283 | * only called when a user process causes a CPU exception and from the kernel
|
---|
284 | * process level, which runs to completion.
|
---|
285 | */
|
---|
286 | register struct proc *rp;
|
---|
287 |
|
---|
288 | /* Check if the signal is already pending. Process it otherwise. */
|
---|
289 | rp = proc_addr(proc_nr);
|
---|
290 | if (! sigismember(&rp->p_pending, sig_nr)) {
|
---|
291 | sigaddset(&rp->p_pending, sig_nr);
|
---|
292 | if (! (rp->p_rts_flags & SIGNALED)) { /* other pending */
|
---|
293 | if (rp->p_rts_flags == 0) lock_dequeue(rp); /* make not ready */
|
---|
294 | rp->p_rts_flags |= SIGNALED | SIG_PENDING; /* update flags */
|
---|
295 | send_sig(PM_PROC_NR, SIGKSIG);
|
---|
296 | }
|
---|
297 | }
|
---|
298 | }
|
---|
299 |
|
---|
300 | /*===========================================================================*
|
---|
301 | * umap_bios *
|
---|
302 | *===========================================================================*/
|
---|
303 | PUBLIC phys_bytes umap_bios(rp, vir_addr, bytes)
|
---|
304 | register struct proc *rp; /* pointer to proc table entry for process */
|
---|
305 | vir_bytes vir_addr; /* virtual address in BIOS segment */
|
---|
306 | vir_bytes bytes; /* # of bytes to be copied */
|
---|
307 | {
|
---|
308 | /* Calculate the physical memory address at the BIOS. Note: currently, BIOS
|
---|
309 | * address zero (the first BIOS interrupt vector) is not considered, as an
|
---|
310 | * error here, but since the physical address will be zero as well, the
|
---|
311 | * calling function will think an error occurred. This is not a problem,
|
---|
312 | * since no one uses the first BIOS interrupt vector.
|
---|
313 | */
|
---|
314 |
|
---|
315 | /* Check all acceptable ranges. */
|
---|
316 | if (vir_addr >= BIOS_MEM_BEGIN && vir_addr + bytes <= BIOS_MEM_END)
|
---|
317 | return (phys_bytes) vir_addr;
|
---|
318 | else if (vir_addr >= BASE_MEM_TOP && vir_addr + bytes <= UPPER_MEM_END)
|
---|
319 | return (phys_bytes) vir_addr;
|
---|
320 |
|
---|
321 | #if DEAD_CODE /* brutal fix, if the above is too restrictive */
|
---|
322 | if (vir_addr >= BIOS_MEM_BEGIN && vir_addr + bytes <= UPPER_MEM_END)
|
---|
323 | return (phys_bytes) vir_addr;
|
---|
324 | #endif
|
---|
325 |
|
---|
326 | kprintf("Warning, error in umap_bios, virtual address 0x%x\n", vir_addr);
|
---|
327 | return 0;
|
---|
328 | }
|
---|
329 |
|
---|
330 | /*===========================================================================*
|
---|
331 | * umap_local *
|
---|
332 | *===========================================================================*/
|
---|
333 | PUBLIC phys_bytes umap_local(rp, seg, vir_addr, bytes)
|
---|
334 | register struct proc *rp; /* pointer to proc table entry for process */
|
---|
335 | int seg; /* T, D, or S segment */
|
---|
336 | vir_bytes vir_addr; /* virtual address in bytes within the seg */
|
---|
337 | vir_bytes bytes; /* # of bytes to be copied */
|
---|
338 | {
|
---|
339 | /* Calculate the physical memory address for a given virtual address. */
|
---|
340 | vir_clicks vc; /* the virtual address in clicks */
|
---|
341 | phys_bytes pa; /* intermediate variables as phys_bytes */
|
---|
342 | #if (CHIP == INTEL)
|
---|
343 | phys_bytes seg_base;
|
---|
344 | #endif
|
---|
345 |
|
---|
346 | /* If 'seg' is D it could really be S and vice versa. T really means T.
|
---|
347 | * If the virtual address falls in the gap, it causes a problem. On the
|
---|
348 | * 8088 it is probably a legal stack reference, since "stackfaults" are
|
---|
349 | * not detected by the hardware. On 8088s, the gap is called S and
|
---|
350 | * accepted, but on other machines it is called D and rejected.
|
---|
351 | * The Atari ST behaves like the 8088 in this respect.
|
---|
352 | */
|
---|
353 |
|
---|
354 | if (bytes <= 0) return( (phys_bytes) 0);
|
---|
355 | if (vir_addr + bytes <= vir_addr) return 0; /* overflow */
|
---|
356 | vc = (vir_addr + bytes - 1) >> CLICK_SHIFT; /* last click of data */
|
---|
357 |
|
---|
358 | #if (CHIP == INTEL) || (CHIP == M68000)
|
---|
359 | if (seg != T)
|
---|
360 | seg = (vc < rp->p_memmap[D].mem_vir + rp->p_memmap[D].mem_len ? D : S);
|
---|
361 | #else
|
---|
362 | if (seg != T)
|
---|
363 | seg = (vc < rp->p_memmap[S].mem_vir ? D : S);
|
---|
364 | #endif
|
---|
365 |
|
---|
366 | if ((vir_addr>>CLICK_SHIFT) >= rp->p_memmap[seg].mem_vir +
|
---|
367 | rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 );
|
---|
368 |
|
---|
369 | if (vc >= rp->p_memmap[seg].mem_vir +
|
---|
370 | rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 );
|
---|
371 |
|
---|
372 | #if (CHIP == INTEL)
|
---|
373 | seg_base = (phys_bytes) rp->p_memmap[seg].mem_phys;
|
---|
374 | seg_base = seg_base << CLICK_SHIFT; /* segment origin in bytes */
|
---|
375 | #endif
|
---|
376 | pa = (phys_bytes) vir_addr;
|
---|
377 | #if (CHIP != M68000)
|
---|
378 | pa -= rp->p_memmap[seg].mem_vir << CLICK_SHIFT;
|
---|
379 | return(seg_base + pa);
|
---|
380 | #endif
|
---|
381 | #if (CHIP == M68000)
|
---|
382 | pa -= (phys_bytes)rp->p_memmap[seg].mem_vir << CLICK_SHIFT;
|
---|
383 | pa += (phys_bytes)rp->p_memmap[seg].mem_phys << CLICK_SHIFT;
|
---|
384 | return(pa);
|
---|
385 | #endif
|
---|
386 | }
|
---|
387 |
|
---|
388 | /*===========================================================================*
|
---|
389 | * umap_remote *
|
---|
390 | *===========================================================================*/
|
---|
391 | PUBLIC phys_bytes umap_remote(rp, seg, vir_addr, bytes)
|
---|
392 | register struct proc *rp; /* pointer to proc table entry for process */
|
---|
393 | int seg; /* index of remote segment */
|
---|
394 | vir_bytes vir_addr; /* virtual address in bytes within the seg */
|
---|
395 | vir_bytes bytes; /* # of bytes to be copied */
|
---|
396 | {
|
---|
397 | /* Calculate the physical memory address for a given virtual address. */
|
---|
398 | struct far_mem *fm;
|
---|
399 |
|
---|
400 | if (bytes <= 0) return( (phys_bytes) 0);
|
---|
401 | if (seg < 0 || seg >= NR_REMOTE_SEGS) return( (phys_bytes) 0);
|
---|
402 |
|
---|
403 | fm = &rp->p_priv->s_farmem[seg];
|
---|
404 | if (! fm->in_use) return( (phys_bytes) 0);
|
---|
405 | if (vir_addr + bytes > fm->mem_len) return( (phys_bytes) 0);
|
---|
406 |
|
---|
407 | return(fm->mem_phys + (phys_bytes) vir_addr);
|
---|
408 | }
|
---|
409 |
|
---|
410 | /*===========================================================================*
|
---|
411 | * virtual_copy *
|
---|
412 | *===========================================================================*/
|
---|
413 | PUBLIC int virtual_copy(src_addr, dst_addr, bytes)
|
---|
414 | struct vir_addr *src_addr; /* source virtual address */
|
---|
415 | struct vir_addr *dst_addr; /* destination virtual address */
|
---|
416 | vir_bytes bytes; /* # of bytes to copy */
|
---|
417 | {
|
---|
418 | /* Copy bytes from virtual address src_addr to virtual address dst_addr.
|
---|
419 | * Virtual addresses can be in ABS, LOCAL_SEG, REMOTE_SEG, or BIOS_SEG.
|
---|
420 | */
|
---|
421 | struct vir_addr *vir_addr[2]; /* virtual source and destination address */
|
---|
422 | phys_bytes phys_addr[2]; /* absolute source and destination */
|
---|
423 | int seg_index;
|
---|
424 | int i;
|
---|
425 |
|
---|
426 | /* Check copy count. */
|
---|
427 | if (bytes <= 0) return(EDOM);
|
---|
428 |
|
---|
429 | /* Do some more checks and map virtual addresses to physical addresses. */
|
---|
430 | vir_addr[_SRC_] = src_addr;
|
---|
431 | vir_addr[_DST_] = dst_addr;
|
---|
432 | for (i=_SRC_; i<=_DST_; i++) {
|
---|
433 | int proc_nr, type;
|
---|
434 | struct proc *p;
|
---|
435 |
|
---|
436 | type = vir_addr[i]->segment & SEGMENT_TYPE;
|
---|
437 | if(type != PHYS_SEG && isokendpt(vir_addr[i]->proc_nr_e, &proc_nr))
|
---|
438 | p = proc_addr(proc_nr);
|
---|
439 | else
|
---|
440 | p = NULL;
|
---|
441 |
|
---|
442 | /* Get physical address. */
|
---|
443 | switch(type) {
|
---|
444 | case LOCAL_SEG:
|
---|
445 | if(!p) return EDEADSRCDST;
|
---|
446 | seg_index = vir_addr[i]->segment & SEGMENT_INDEX;
|
---|
447 | phys_addr[i] = umap_local(p, seg_index, vir_addr[i]->offset, bytes);
|
---|
448 | break;
|
---|
449 | case REMOTE_SEG:
|
---|
450 | if(!p) return EDEADSRCDST;
|
---|
451 | seg_index = vir_addr[i]->segment & SEGMENT_INDEX;
|
---|
452 | phys_addr[i] = umap_remote(p, seg_index, vir_addr[i]->offset, bytes);
|
---|
453 | break;
|
---|
454 | case BIOS_SEG:
|
---|
455 | if(!p) return EDEADSRCDST;
|
---|
456 | phys_addr[i] = umap_bios(p, vir_addr[i]->offset, bytes );
|
---|
457 | break;
|
---|
458 | case PHYS_SEG:
|
---|
459 | phys_addr[i] = vir_addr[i]->offset;
|
---|
460 | break;
|
---|
461 | default:
|
---|
462 | return(EINVAL);
|
---|
463 | }
|
---|
464 |
|
---|
465 | /* Check if mapping succeeded. */
|
---|
466 | if (phys_addr[i] <= 0 && vir_addr[i]->segment != PHYS_SEG)
|
---|
467 | return(EFAULT);
|
---|
468 | }
|
---|
469 |
|
---|
470 | /* Now copy bytes between physical addresseses. */
|
---|
471 | phys_copy(phys_addr[_SRC_], phys_addr[_DST_], (phys_bytes) bytes);
|
---|
472 | return(OK);
|
---|
473 | }
|
---|
474 |
|
---|
475 |
|
---|
476 | /*===========================================================================*
|
---|
477 | * clear_endpoint *
|
---|
478 | *===========================================================================*/
|
---|
479 | PUBLIC void clear_endpoint(rc)
|
---|
480 | register struct proc *rc; /* slot of process to clean up */
|
---|
481 | {
|
---|
482 | register struct proc *rp; /* iterate over process table */
|
---|
483 | register struct proc **xpp; /* iterate over caller queue */
|
---|
484 | int i;
|
---|
485 | int sys_id;
|
---|
486 |
|
---|
487 | if(isemptyp(rc)) panic("clear_proc: empty process", proc_nr(rc));
|
---|
488 |
|
---|
489 | /* Make sure that the exiting process is no longer scheduled. */
|
---|
490 | if (rc->p_rts_flags == 0) lock_dequeue(rc);
|
---|
491 | rc->p_rts_flags |= NO_ENDPOINT;
|
---|
492 |
|
---|
493 | /* If the process happens to be queued trying to send a
|
---|
494 | * message, then it must be removed from the message queues.
|
---|
495 | */
|
---|
496 | if (rc->p_rts_flags & SENDING) {
|
---|
497 | int target_proc;
|
---|
498 |
|
---|
499 | okendpt(rc->p_sendto_e, &target_proc);
|
---|
500 | xpp = &proc_addr(target_proc)->p_caller_q; /* destination's queue */
|
---|
501 | while (*xpp != NIL_PROC) { /* check entire queue */
|
---|
502 | if (*xpp == rc) { /* process is on the queue */
|
---|
503 | *xpp = (*xpp)->p_q_link; /* replace by next process */
|
---|
504 | #if DEBUG_ENABLE_IPC_WARNINGS
|
---|
505 | kprintf("Proc %d removed from queue at %d\n",
|
---|
506 | proc_nr(rc), rc->p_sendto_e);
|
---|
507 | #endif
|
---|
508 | break; /* can only be queued once */
|
---|
509 | }
|
---|
510 | xpp = &(*xpp)->p_q_link; /* proceed to next queued */
|
---|
511 | }
|
---|
512 | rc->p_rts_flags &= ~SENDING;
|
---|
513 | }
|
---|
514 | rc->p_rts_flags &= ~RECEIVING;
|
---|
515 |
|
---|
516 | /* Likewise, if another process was sending or receive a message to or from
|
---|
517 | * the exiting process, it must be alerted that process no longer is alive.
|
---|
518 | * Check all processes.
|
---|
519 | */
|
---|
520 | for (rp = BEG_PROC_ADDR; rp < END_PROC_ADDR; rp++) {
|
---|
521 | if(isemptyp(rp))
|
---|
522 | continue;
|
---|
523 |
|
---|
524 | /* Unset pending notification bits. */
|
---|
525 | unset_sys_bit(priv(rp)->s_notify_pending, priv(rc)->s_id);
|
---|
526 |
|
---|
527 | /* Check if process is receiving from exiting process. */
|
---|
528 | if ((rp->p_rts_flags & RECEIVING) && rp->p_getfrom_e == rc->p_endpoint) {
|
---|
529 | rp->p_reg.retreg = ESRCDIED; /* report source died */
|
---|
530 | rp->p_rts_flags &= ~RECEIVING; /* no longer receiving */
|
---|
531 | #if DEBUG_ENABLE_IPC_WARNINGS
|
---|
532 | kprintf("Proc %d receive dead src %d\n", proc_nr(rp), proc_nr(rc));
|
---|
533 | #endif
|
---|
534 | if (rp->p_rts_flags == 0) lock_enqueue(rp);/* let process run again */
|
---|
535 | }
|
---|
536 | if ((rp->p_rts_flags & SENDING) && rp->p_sendto_e == rc->p_endpoint) {
|
---|
537 | rp->p_reg.retreg = EDSTDIED; /* report destination died */
|
---|
538 | rp->p_rts_flags &= ~SENDING; /* no longer sending */
|
---|
539 | #if DEBUG_ENABLE_IPC_WARNINGS
|
---|
540 | kprintf("Proc %d send dead dst %d\n", proc_nr(rp), proc_nr(rc));
|
---|
541 | #endif
|
---|
542 | if (rp->p_rts_flags == 0) lock_enqueue(rp);/* let process run again */
|
---|
543 | }
|
---|
544 | }
|
---|
545 | }
|
---|
546 |
|
---|
547 |
|
---|