[9] | 1 | (*
|
---|
| 2 | (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
|
---|
| 3 | See the copyright notice in the ACK home directory, in the file "Copyright".
|
---|
| 4 | *)
|
---|
| 5 |
|
---|
| 6 | (*$R-*)
|
---|
| 7 | IMPLEMENTATION MODULE Mathlib;
|
---|
| 8 | (*
|
---|
| 9 | Module: Mathematical functions
|
---|
| 10 | Author: Ceriel J.H. Jacobs
|
---|
| 11 | Version: $Header: /cvsup/minix/src/lib/ack/libm2/Mathlib.mod,v 1.1 2005/10/10 15:27:46 beng Exp $
|
---|
| 12 | *)
|
---|
| 13 |
|
---|
| 14 | FROM EM IMPORT FIF, FEF;
|
---|
| 15 | FROM Traps IMPORT Message;
|
---|
| 16 |
|
---|
| 17 | CONST
|
---|
| 18 | OneRadianInDegrees = 57.295779513082320876798155D;
|
---|
| 19 | OneDegreeInRadians = 0.017453292519943295769237D;
|
---|
| 20 | OneOverSqrt2 = 0.70710678118654752440084436210484904D;
|
---|
| 21 |
|
---|
| 22 | (* basic functions *)
|
---|
| 23 |
|
---|
| 24 | PROCEDURE pow(x: REAL; i: INTEGER): REAL;
|
---|
| 25 | BEGIN
|
---|
| 26 | RETURN SHORT(longpow(LONG(x), i));
|
---|
| 27 | END pow;
|
---|
| 28 |
|
---|
| 29 | PROCEDURE longpow(x: LONGREAL; i: INTEGER): LONGREAL;
|
---|
| 30 | VAR val: LONGREAL;
|
---|
| 31 | ri: LONGREAL;
|
---|
| 32 | BEGIN
|
---|
| 33 | ri := FLOATD(i);
|
---|
| 34 | IF x < 0.0D THEN
|
---|
| 35 | val := longexp(longln(-x) * ri);
|
---|
| 36 | IF ODD(i) THEN RETURN -val;
|
---|
| 37 | ELSE RETURN val;
|
---|
| 38 | END;
|
---|
| 39 | ELSIF x = 0.0D THEN
|
---|
| 40 | RETURN 0.0D;
|
---|
| 41 | ELSE
|
---|
| 42 | RETURN longexp(longln(x) * ri);
|
---|
| 43 | END;
|
---|
| 44 | END longpow;
|
---|
| 45 |
|
---|
| 46 | PROCEDURE sqrt(x: REAL): REAL;
|
---|
| 47 | BEGIN
|
---|
| 48 | RETURN SHORT(longsqrt(LONG(x)));
|
---|
| 49 | END sqrt;
|
---|
| 50 |
|
---|
| 51 | PROCEDURE longsqrt(x: LONGREAL): LONGREAL;
|
---|
| 52 | VAR
|
---|
| 53 | temp: LONGREAL;
|
---|
| 54 | exp, i: INTEGER;
|
---|
| 55 | BEGIN
|
---|
| 56 | IF x <= 0.0D THEN
|
---|
| 57 | IF x < 0.0D THEN
|
---|
| 58 | Message("sqrt: negative argument");
|
---|
| 59 | HALT
|
---|
| 60 | END;
|
---|
| 61 | RETURN 0.0D;
|
---|
| 62 | END;
|
---|
| 63 | temp := FEF(x,exp);
|
---|
| 64 | (*
|
---|
| 65 | * NOTE
|
---|
| 66 | * this wont work on 1's comp
|
---|
| 67 | *)
|
---|
| 68 | IF ODD(exp) THEN
|
---|
| 69 | temp := 2.0D * temp;
|
---|
| 70 | DEC(exp);
|
---|
| 71 | END;
|
---|
| 72 | temp := 0.5D*(1.0D + temp);
|
---|
| 73 |
|
---|
| 74 | WHILE exp > 28 DO
|
---|
| 75 | temp := temp * 16384.0D;
|
---|
| 76 | exp := exp - 28;
|
---|
| 77 | END;
|
---|
| 78 | WHILE exp < -28 DO
|
---|
| 79 | temp := temp / 16384.0D;
|
---|
| 80 | exp := exp + 28;
|
---|
| 81 | END;
|
---|
| 82 | WHILE exp >= 2 DO
|
---|
| 83 | temp := temp * 2.0D;
|
---|
| 84 | exp := exp - 2;
|
---|
| 85 | END;
|
---|
| 86 | WHILE exp <= -2 DO
|
---|
| 87 | temp := temp / 2.0D;
|
---|
| 88 | exp := exp + 2;
|
---|
| 89 | END;
|
---|
| 90 | FOR i := 0 TO 5 DO
|
---|
| 91 | temp := 0.5D*(temp + x/temp);
|
---|
| 92 | END;
|
---|
| 93 | RETURN temp;
|
---|
| 94 | END longsqrt;
|
---|
| 95 |
|
---|
| 96 | PROCEDURE ldexp(x:LONGREAL; n: INTEGER): LONGREAL;
|
---|
| 97 | BEGIN
|
---|
| 98 | WHILE n >= 16 DO
|
---|
| 99 | x := x * 65536.0D;
|
---|
| 100 | n := n - 16;
|
---|
| 101 | END;
|
---|
| 102 | WHILE n > 0 DO
|
---|
| 103 | x := x * 2.0D;
|
---|
| 104 | DEC(n);
|
---|
| 105 | END;
|
---|
| 106 | WHILE n <= -16 DO
|
---|
| 107 | x := x / 65536.0D;
|
---|
| 108 | n := n + 16;
|
---|
| 109 | END;
|
---|
| 110 | WHILE n < 0 DO
|
---|
| 111 | x := x / 2.0D;
|
---|
| 112 | INC(n);
|
---|
| 113 | END;
|
---|
| 114 | RETURN x;
|
---|
| 115 | END ldexp;
|
---|
| 116 |
|
---|
| 117 | PROCEDURE exp(x: REAL): REAL;
|
---|
| 118 | BEGIN
|
---|
| 119 | RETURN SHORT(longexp(LONG(x)));
|
---|
| 120 | END exp;
|
---|
| 121 |
|
---|
| 122 | PROCEDURE longexp(x: LONGREAL): LONGREAL;
|
---|
| 123 | (* Algorithm and coefficients from:
|
---|
| 124 | "Software manual for the elementary functions"
|
---|
| 125 | by W.J. Cody and W. Waite, Prentice-Hall, 1980
|
---|
| 126 | *)
|
---|
| 127 | CONST
|
---|
| 128 | p0 = 0.25000000000000000000D+00;
|
---|
| 129 | p1 = 0.75753180159422776666D-02;
|
---|
| 130 | p2 = 0.31555192765684646356D-04;
|
---|
| 131 | q0 = 0.50000000000000000000D+00;
|
---|
| 132 | q1 = 0.56817302698551221787D-01;
|
---|
| 133 | q2 = 0.63121894374398503557D-03;
|
---|
| 134 | q3 = 0.75104028399870046114D-06;
|
---|
| 135 |
|
---|
| 136 | VAR
|
---|
| 137 | neg: BOOLEAN;
|
---|
| 138 | n: INTEGER;
|
---|
| 139 | xn, g, x1, x2: LONGREAL;
|
---|
| 140 | BEGIN
|
---|
| 141 | neg := x < 0.0D;
|
---|
| 142 | IF neg THEN
|
---|
| 143 | x := -x;
|
---|
| 144 | END;
|
---|
| 145 | n := TRUNC(x/longln2 + 0.5D);
|
---|
| 146 | xn := FLOATD(n);
|
---|
| 147 | x1 := FLOATD(TRUNCD(x));
|
---|
| 148 | x2 := x - x1;
|
---|
| 149 | g := ((x1 - xn * 0.693359375D)+x2) - xn * (-2.1219444005469058277D-4);
|
---|
| 150 | IF neg THEN
|
---|
| 151 | g := -g;
|
---|
| 152 | n := -n;
|
---|
| 153 | END;
|
---|
| 154 | xn := g*g;
|
---|
| 155 | x := g*((p2*xn+p1)*xn+p0);
|
---|
| 156 | INC(n);
|
---|
| 157 | RETURN ldexp(0.5D + x/((((q3*xn+q2)*xn+q1)*xn+q0) - x), n);
|
---|
| 158 | END longexp;
|
---|
| 159 |
|
---|
| 160 | PROCEDURE ln(x: REAL): REAL; (* natural log *)
|
---|
| 161 | BEGIN
|
---|
| 162 | RETURN SHORT(longln(LONG(x)));
|
---|
| 163 | END ln;
|
---|
| 164 |
|
---|
| 165 | PROCEDURE longln(x: LONGREAL): LONGREAL; (* natural log *)
|
---|
| 166 | (* Algorithm and coefficients from:
|
---|
| 167 | "Software manual for the elementary functions"
|
---|
| 168 | by W.J. Cody and W. Waite, Prentice-Hall, 1980
|
---|
| 169 | *)
|
---|
| 170 | CONST
|
---|
| 171 | p0 = -0.64124943423745581147D+02;
|
---|
| 172 | p1 = 0.16383943563021534222D+02;
|
---|
| 173 | p2 = -0.78956112887491257267D+00;
|
---|
| 174 | q0 = -0.76949932108494879777D+03;
|
---|
| 175 | q1 = 0.31203222091924532844D+03;
|
---|
| 176 | q2 = -0.35667977739034646171D+02;
|
---|
| 177 | q3 = 1.0D;
|
---|
| 178 | VAR
|
---|
| 179 | exp: INTEGER;
|
---|
| 180 | z, znum, zden, w: LONGREAL;
|
---|
| 181 |
|
---|
| 182 | BEGIN
|
---|
| 183 | IF x <= 0.0D THEN
|
---|
| 184 | Message("ln: argument <= 0");
|
---|
| 185 | HALT
|
---|
| 186 | END;
|
---|
| 187 | x := FEF(x, exp);
|
---|
| 188 | IF x > OneOverSqrt2 THEN
|
---|
| 189 | znum := (x - 0.5D) - 0.5D;
|
---|
| 190 | zden := x * 0.5D + 0.5D;
|
---|
| 191 | ELSE
|
---|
| 192 | znum := x - 0.5D;
|
---|
| 193 | zden := znum * 0.5D + 0.5D;
|
---|
| 194 | DEC(exp);
|
---|
| 195 | END;
|
---|
| 196 | z := znum / zden;
|
---|
| 197 | w := z * z;
|
---|
| 198 | x := z + z * w * (((p2*w+p1)*w+p0)/(((q3*w+q2)*w+q1)*w+q0));
|
---|
| 199 | z := FLOATD(exp);
|
---|
| 200 | x := x + z * (-2.121944400546905827679D-4);
|
---|
| 201 | RETURN x + z * 0.693359375D;
|
---|
| 202 | END longln;
|
---|
| 203 |
|
---|
| 204 | PROCEDURE log(x: REAL): REAL; (* log with base 10 *)
|
---|
| 205 | BEGIN
|
---|
| 206 | RETURN SHORT(longlog(LONG(x)));
|
---|
| 207 | END log;
|
---|
| 208 |
|
---|
| 209 | PROCEDURE longlog(x: LONGREAL): LONGREAL; (* log with base 10 *)
|
---|
| 210 | BEGIN
|
---|
| 211 | RETURN longln(x)/longln10;
|
---|
| 212 | END longlog;
|
---|
| 213 |
|
---|
| 214 | (* trigonometric functions; arguments in radians *)
|
---|
| 215 |
|
---|
| 216 | PROCEDURE sin(x: REAL): REAL;
|
---|
| 217 | BEGIN
|
---|
| 218 | RETURN SHORT(longsin(LONG(x)));
|
---|
| 219 | END sin;
|
---|
| 220 |
|
---|
| 221 | PROCEDURE sinus(x: LONGREAL; cosflag: BOOLEAN) : LONGREAL;
|
---|
| 222 | (* Algorithm and coefficients from:
|
---|
| 223 | "Software manual for the elementary functions"
|
---|
| 224 | by W.J. Cody and W. Waite, Prentice-Hall, 1980
|
---|
| 225 | *)
|
---|
| 226 | CONST
|
---|
| 227 | r0 = -0.16666666666666665052D+00;
|
---|
| 228 | r1 = 0.83333333333331650314D-02;
|
---|
| 229 | r2 = -0.19841269841201840457D-03;
|
---|
| 230 | r3 = 0.27557319210152756119D-05;
|
---|
| 231 | r4 = -0.25052106798274584544D-07;
|
---|
| 232 | r5 = 0.16058936490371589114D-09;
|
---|
| 233 | r6 = -0.76429178068910467734D-12;
|
---|
| 234 | r7 = 0.27204790957888846175D-14;
|
---|
| 235 | A1 = 3.1416015625D;
|
---|
| 236 | A2 = -8.908910206761537356617D-6;
|
---|
| 237 | VAR
|
---|
| 238 | x1, x2, y : LONGREAL;
|
---|
| 239 | neg : BOOLEAN;
|
---|
| 240 | BEGIN
|
---|
| 241 | IF x < 0.0D THEN
|
---|
| 242 | neg := TRUE;
|
---|
| 243 | x := -x
|
---|
| 244 | ELSE neg := FALSE
|
---|
| 245 | END;
|
---|
| 246 | IF cosflag THEN
|
---|
| 247 | neg := FALSE;
|
---|
| 248 | y := longhalfpi + x
|
---|
| 249 | ELSE
|
---|
| 250 | y := x
|
---|
| 251 | END;
|
---|
| 252 | y := y / longpi + 0.5D;
|
---|
| 253 |
|
---|
| 254 | IF FIF(y, 1.0D, y) < 0.0D THEN ; END;
|
---|
| 255 | IF FIF(y, 0.5D, x1) # 0.0D THEN neg := NOT neg END;
|
---|
| 256 | IF cosflag THEN y := y - 0.5D END;
|
---|
| 257 | x2 := FIF(x, 1.0, x1);
|
---|
| 258 | x := x1 - y * A1;
|
---|
| 259 | x := x + x2;
|
---|
| 260 | x := x - y * A2;
|
---|
| 261 |
|
---|
| 262 | IF x < 0.0D THEN
|
---|
| 263 | neg := NOT neg;
|
---|
| 264 | x := -x
|
---|
| 265 | END;
|
---|
| 266 | y := x * x;
|
---|
| 267 | x := x + x * y * (((((((r7*y+r6)*y+r5)*y+r4)*y+r3)*y+r2)*y+r1)*y+r0);
|
---|
| 268 | IF neg THEN RETURN -x END;
|
---|
| 269 | RETURN x;
|
---|
| 270 | END sinus;
|
---|
| 271 |
|
---|
| 272 | PROCEDURE longsin(x: LONGREAL): LONGREAL;
|
---|
| 273 | BEGIN
|
---|
| 274 | RETURN sinus(x, FALSE);
|
---|
| 275 | END longsin;
|
---|
| 276 |
|
---|
| 277 | PROCEDURE cos(x: REAL): REAL;
|
---|
| 278 | BEGIN
|
---|
| 279 | RETURN SHORT(longcos(LONG(x)));
|
---|
| 280 | END cos;
|
---|
| 281 |
|
---|
| 282 | PROCEDURE longcos(x: LONGREAL): LONGREAL;
|
---|
| 283 | BEGIN
|
---|
| 284 | IF x < 0.0D THEN x := -x; END;
|
---|
| 285 | RETURN sinus(x, TRUE);
|
---|
| 286 | END longcos;
|
---|
| 287 |
|
---|
| 288 | PROCEDURE tan(x: REAL): REAL;
|
---|
| 289 | BEGIN
|
---|
| 290 | RETURN SHORT(longtan(LONG(x)));
|
---|
| 291 | END tan;
|
---|
| 292 |
|
---|
| 293 | PROCEDURE longtan(x: LONGREAL): LONGREAL;
|
---|
| 294 | (* Algorithm and coefficients from:
|
---|
| 295 | "Software manual for the elementary functions"
|
---|
| 296 | by W.J. Cody and W. Waite, Prentice-Hall, 1980
|
---|
| 297 | *)
|
---|
| 298 |
|
---|
| 299 | CONST
|
---|
| 300 | p1 = -0.13338350006421960681D+00;
|
---|
| 301 | p2 = 0.34248878235890589960D-02;
|
---|
| 302 | p3 = -0.17861707342254426711D-04;
|
---|
| 303 |
|
---|
| 304 | q0 = 1.0D;
|
---|
| 305 | q1 = -0.46671683339755294240D+00;
|
---|
| 306 | q2 = 0.25663832289440112864D-01;
|
---|
| 307 | q3 = -0.31181531907010027307D-03;
|
---|
| 308 | q4 = 0.49819433993786512270D-06;
|
---|
| 309 |
|
---|
| 310 | A1 = 1.57080078125D;
|
---|
| 311 | A2 = -4.454455103380768678308D-06;
|
---|
| 312 |
|
---|
| 313 | VAR y, x1, x2: LONGREAL;
|
---|
| 314 | negative: BOOLEAN;
|
---|
| 315 | invert: BOOLEAN;
|
---|
| 316 | BEGIN
|
---|
| 317 | negative := x < 0.0D;
|
---|
| 318 | y := x / longhalfpi + 0.5D;
|
---|
| 319 |
|
---|
| 320 | (* Use extended precision to calculate reduced argument.
|
---|
| 321 | Here we used 12 bits of the mantissa for a1.
|
---|
| 322 | Also split x in integer part x1 and fraction part x2.
|
---|
| 323 | *)
|
---|
| 324 | IF FIF(y, 1.0D, y) < 0.0D THEN ; END;
|
---|
| 325 | invert := FIF(y, 0.5D, x1) # 0.0D;
|
---|
| 326 | x2 := FIF(x, 1.0D, x1);
|
---|
| 327 | x := x1 - y * A1;
|
---|
| 328 | x := x + x2;
|
---|
| 329 | x := x - y * A2;
|
---|
| 330 |
|
---|
| 331 | y := x * x;
|
---|
| 332 | x := x + x * y * ((p3*y+p2)*y+p1);
|
---|
| 333 | y := (((q4*y+q3)*y+q2)*y+q1)*y+q0;
|
---|
| 334 | IF negative THEN x := -x END;
|
---|
| 335 | IF invert THEN RETURN -y/x END;
|
---|
| 336 | RETURN x/y;
|
---|
| 337 | END longtan;
|
---|
| 338 |
|
---|
| 339 | PROCEDURE arcsin(x: REAL): REAL;
|
---|
| 340 | BEGIN
|
---|
| 341 | RETURN SHORT(longarcsin(LONG(x)));
|
---|
| 342 | END arcsin;
|
---|
| 343 |
|
---|
| 344 | PROCEDURE arcsincos(x: LONGREAL; cosfl: BOOLEAN): LONGREAL;
|
---|
| 345 | CONST
|
---|
| 346 | p0 = -0.27368494524164255994D+02;
|
---|
| 347 | p1 = 0.57208227877891731407D+02;
|
---|
| 348 | p2 = -0.39688862997540877339D+02;
|
---|
| 349 | p3 = 0.10152522233806463645D+02;
|
---|
| 350 | p4 = -0.69674573447350646411D+00;
|
---|
| 351 |
|
---|
| 352 | q0 = -0.16421096714498560795D+03;
|
---|
| 353 | q1 = 0.41714430248260412556D+03;
|
---|
| 354 | q2 = -0.38186303361750149284D+03;
|
---|
| 355 | q3 = 0.15095270841030604719D+03;
|
---|
| 356 | q4 = -0.23823859153670238830D+02;
|
---|
| 357 | q5 = 1.0D;
|
---|
| 358 | VAR
|
---|
| 359 | negative : BOOLEAN;
|
---|
| 360 | big: BOOLEAN;
|
---|
| 361 | g: LONGREAL;
|
---|
| 362 | BEGIN
|
---|
| 363 | negative := x < 0.0D;
|
---|
| 364 | IF negative THEN x := -x; END;
|
---|
| 365 | IF x > 0.5D THEN
|
---|
| 366 | big := TRUE;
|
---|
| 367 | IF x > 1.0D THEN
|
---|
| 368 | Message("arcsin or arccos: argument > 1");
|
---|
| 369 | HALT
|
---|
| 370 | END;
|
---|
| 371 | g := 0.5D - 0.5D * x;
|
---|
| 372 | x := -longsqrt(g);
|
---|
| 373 | x := x + x;
|
---|
| 374 | ELSE
|
---|
| 375 | big := FALSE;
|
---|
| 376 | g := x * x;
|
---|
| 377 | END;
|
---|
| 378 | x := x + x * g *
|
---|
| 379 | ((((p4*g+p3)*g+p2)*g+p1)*g+p0)/(((((q5*g+q4)*g+q3)*g+q2)*g+q1)*g+q0);
|
---|
| 380 | IF cosfl AND NOT negative THEN x := -x END;
|
---|
| 381 | IF cosfl = NOT big THEN
|
---|
| 382 | x := (x + longquartpi) + longquartpi;
|
---|
| 383 | ELSIF cosfl AND negative AND big THEN
|
---|
| 384 | x := (x + longhalfpi) + longhalfpi;
|
---|
| 385 | END;
|
---|
| 386 | IF negative AND NOT cosfl THEN x := -x END;
|
---|
| 387 | RETURN x;
|
---|
| 388 | END arcsincos;
|
---|
| 389 |
|
---|
| 390 | PROCEDURE longarcsin(x: LONGREAL): LONGREAL;
|
---|
| 391 | BEGIN
|
---|
| 392 | RETURN arcsincos(x, FALSE);
|
---|
| 393 | END longarcsin;
|
---|
| 394 |
|
---|
| 395 | PROCEDURE arccos(x: REAL): REAL;
|
---|
| 396 | BEGIN
|
---|
| 397 | RETURN SHORT(longarccos(LONG(x)));
|
---|
| 398 | END arccos;
|
---|
| 399 |
|
---|
| 400 | PROCEDURE longarccos(x: LONGREAL): LONGREAL;
|
---|
| 401 | BEGIN
|
---|
| 402 | RETURN arcsincos(x, TRUE);
|
---|
| 403 | END longarccos;
|
---|
| 404 |
|
---|
| 405 | PROCEDURE arctan(x: REAL): REAL;
|
---|
| 406 | BEGIN
|
---|
| 407 | RETURN SHORT(longarctan(LONG(x)));
|
---|
| 408 | END arctan;
|
---|
| 409 |
|
---|
| 410 | VAR A: ARRAY[0..3] OF LONGREAL;
|
---|
| 411 | arctaninit: BOOLEAN;
|
---|
| 412 |
|
---|
| 413 | PROCEDURE longarctan(x: LONGREAL): LONGREAL;
|
---|
| 414 | (* Algorithm and coefficients from:
|
---|
| 415 | "Software manual for the elementary functions"
|
---|
| 416 | by W.J. Cody and W. Waite, Prentice-Hall, 1980
|
---|
| 417 | *)
|
---|
| 418 | CONST
|
---|
| 419 | p0 = -0.13688768894191926929D+02;
|
---|
| 420 | p1 = -0.20505855195861651981D+02;
|
---|
| 421 | p2 = -0.84946240351320683534D+01;
|
---|
| 422 | p3 = -0.83758299368150059274D+00;
|
---|
| 423 | q0 = 0.41066306682575781263D+02;
|
---|
| 424 | q1 = 0.86157349597130242515D+02;
|
---|
| 425 | q2 = 0.59578436142597344465D+02;
|
---|
| 426 | q3 = 0.15024001160028576121D+02;
|
---|
| 427 | q4 = 1.0D;
|
---|
| 428 | VAR
|
---|
| 429 | g: LONGREAL;
|
---|
| 430 | neg: BOOLEAN;
|
---|
| 431 | n: INTEGER;
|
---|
| 432 | BEGIN
|
---|
| 433 | IF NOT arctaninit THEN
|
---|
| 434 | arctaninit := TRUE;
|
---|
| 435 | A[0] := 0.0D;
|
---|
| 436 | A[1] := 0.52359877559829887307710723554658381D; (* p1/6 *)
|
---|
| 437 | A[2] := longhalfpi;
|
---|
| 438 | A[3] := 1.04719755119659774615421446109316763D; (* pi/3 *)
|
---|
| 439 | END;
|
---|
| 440 | neg := FALSE;
|
---|
| 441 | IF x < 0.0D THEN
|
---|
| 442 | neg := TRUE;
|
---|
| 443 | x := -x;
|
---|
| 444 | END;
|
---|
| 445 | IF x > 1.0D THEN
|
---|
| 446 | x := 1.0D/x;
|
---|
| 447 | n := 2
|
---|
| 448 | ELSE
|
---|
| 449 | n := 0
|
---|
| 450 | END;
|
---|
| 451 | IF x > 0.26794919243112270647D (* 2-sqrt(3) *) THEN
|
---|
| 452 | INC(n);
|
---|
| 453 | x := (((0.73205080756887729353D*x-0.5D)-0.5D)+x)/
|
---|
| 454 | (1.73205080756887729353D + x);
|
---|
| 455 | END;
|
---|
| 456 | g := x*x;
|
---|
| 457 | x := x + x * g * (((p3*g+p2)*g+p1)*g+p0) / ((((q4*g+q3)*g+q2)*g+q1)*g+q0);
|
---|
| 458 | IF n > 1 THEN x := -x END;
|
---|
| 459 | x := x + A[n];
|
---|
| 460 | IF neg THEN RETURN -x; END;
|
---|
| 461 | RETURN x;
|
---|
| 462 | END longarctan;
|
---|
| 463 |
|
---|
| 464 | (* hyperbolic functions *)
|
---|
| 465 | (* The C math library has better implementations for some of these, but
|
---|
| 466 | they depend on some properties of the floating point implementation,
|
---|
| 467 | and, for now, we don't want that in the Modula-2 system.
|
---|
| 468 | *)
|
---|
| 469 |
|
---|
| 470 | PROCEDURE sinh(x: REAL): REAL;
|
---|
| 471 | BEGIN
|
---|
| 472 | RETURN SHORT(longsinh(LONG(x)));
|
---|
| 473 | END sinh;
|
---|
| 474 |
|
---|
| 475 | PROCEDURE longsinh(x: LONGREAL): LONGREAL;
|
---|
| 476 | VAR expx: LONGREAL;
|
---|
| 477 | BEGIN
|
---|
| 478 | expx := longexp(x);
|
---|
| 479 | RETURN (expx - 1.0D/expx)/2.0D;
|
---|
| 480 | END longsinh;
|
---|
| 481 |
|
---|
| 482 | PROCEDURE cosh(x: REAL): REAL;
|
---|
| 483 | BEGIN
|
---|
| 484 | RETURN SHORT(longcosh(LONG(x)));
|
---|
| 485 | END cosh;
|
---|
| 486 |
|
---|
| 487 | PROCEDURE longcosh(x: LONGREAL): LONGREAL;
|
---|
| 488 | VAR expx: LONGREAL;
|
---|
| 489 | BEGIN
|
---|
| 490 | expx := longexp(x);
|
---|
| 491 | RETURN (expx + 1.0D/expx)/2.0D;
|
---|
| 492 | END longcosh;
|
---|
| 493 |
|
---|
| 494 | PROCEDURE tanh(x: REAL): REAL;
|
---|
| 495 | BEGIN
|
---|
| 496 | RETURN SHORT(longtanh(LONG(x)));
|
---|
| 497 | END tanh;
|
---|
| 498 |
|
---|
| 499 | PROCEDURE longtanh(x: LONGREAL): LONGREAL;
|
---|
| 500 | VAR expx: LONGREAL;
|
---|
| 501 | BEGIN
|
---|
| 502 | expx := longexp(x);
|
---|
| 503 | RETURN (expx - 1.0D/expx) / (expx + 1.0D/expx);
|
---|
| 504 | END longtanh;
|
---|
| 505 |
|
---|
| 506 | PROCEDURE arcsinh(x: REAL): REAL;
|
---|
| 507 | BEGIN
|
---|
| 508 | RETURN SHORT(longarcsinh(LONG(x)));
|
---|
| 509 | END arcsinh;
|
---|
| 510 |
|
---|
| 511 | PROCEDURE longarcsinh(x: LONGREAL): LONGREAL;
|
---|
| 512 | VAR neg: BOOLEAN;
|
---|
| 513 | BEGIN
|
---|
| 514 | neg := FALSE;
|
---|
| 515 | IF x < 0.0D THEN
|
---|
| 516 | neg := TRUE;
|
---|
| 517 | x := -x;
|
---|
| 518 | END;
|
---|
| 519 | x := longln(x + longsqrt(x*x+1.0D));
|
---|
| 520 | IF neg THEN RETURN -x; END;
|
---|
| 521 | RETURN x;
|
---|
| 522 | END longarcsinh;
|
---|
| 523 |
|
---|
| 524 | PROCEDURE arccosh(x: REAL): REAL;
|
---|
| 525 | BEGIN
|
---|
| 526 | RETURN SHORT(longarccosh(LONG(x)));
|
---|
| 527 | END arccosh;
|
---|
| 528 |
|
---|
| 529 | PROCEDURE longarccosh(x: LONGREAL): LONGREAL;
|
---|
| 530 | BEGIN
|
---|
| 531 | IF x < 1.0D THEN
|
---|
| 532 | Message("arccosh: argument < 1");
|
---|
| 533 | HALT
|
---|
| 534 | END;
|
---|
| 535 | RETURN longln(x + longsqrt(x*x - 1.0D));
|
---|
| 536 | END longarccosh;
|
---|
| 537 |
|
---|
| 538 | PROCEDURE arctanh(x: REAL): REAL;
|
---|
| 539 | BEGIN
|
---|
| 540 | RETURN SHORT(longarctanh(LONG(x)));
|
---|
| 541 | END arctanh;
|
---|
| 542 |
|
---|
| 543 | PROCEDURE longarctanh(x: LONGREAL): LONGREAL;
|
---|
| 544 | BEGIN
|
---|
| 545 | IF (x <= -1.0D) OR (x >= 1.0D) THEN
|
---|
| 546 | Message("arctanh: ABS(argument) >= 1");
|
---|
| 547 | HALT
|
---|
| 548 | END;
|
---|
| 549 | RETURN longln((1.0D + x)/(1.0D - x)) / 2.0D;
|
---|
| 550 | END longarctanh;
|
---|
| 551 |
|
---|
| 552 | (* conversions *)
|
---|
| 553 |
|
---|
| 554 | PROCEDURE RadianToDegree(x: REAL): REAL;
|
---|
| 555 | BEGIN
|
---|
| 556 | RETURN SHORT(longRadianToDegree(LONG(x)));
|
---|
| 557 | END RadianToDegree;
|
---|
| 558 |
|
---|
| 559 | PROCEDURE longRadianToDegree(x: LONGREAL): LONGREAL;
|
---|
| 560 | BEGIN
|
---|
| 561 | RETURN x * OneRadianInDegrees;
|
---|
| 562 | END longRadianToDegree;
|
---|
| 563 |
|
---|
| 564 | PROCEDURE DegreeToRadian(x: REAL): REAL;
|
---|
| 565 | BEGIN
|
---|
| 566 | RETURN SHORT(longDegreeToRadian(LONG(x)));
|
---|
| 567 | END DegreeToRadian;
|
---|
| 568 |
|
---|
| 569 | PROCEDURE longDegreeToRadian(x: LONGREAL): LONGREAL;
|
---|
| 570 | BEGIN
|
---|
| 571 | RETURN x * OneDegreeInRadians;
|
---|
| 572 | END longDegreeToRadian;
|
---|
| 573 |
|
---|
| 574 | BEGIN
|
---|
| 575 | arctaninit := FALSE;
|
---|
| 576 | END Mathlib.
|
---|