1 | /*
|
---|
2 | * Copyright (c) 1983, 1993
|
---|
3 | * The Regents of the University of California. All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | * 1. Redistributions of source code must retain the above copyright
|
---|
9 | * notice, this list of conditions and the following disclaimer.
|
---|
10 | * 2. Redistributions in binary form must reproduce the above copyright
|
---|
11 | * notice, this list of conditions and the following disclaimer in the
|
---|
12 | * documentation and/or other materials provided with the distribution.
|
---|
13 | * 3. All advertising materials mentioning features or use of this software
|
---|
14 | * must display the following acknowledgement:
|
---|
15 | * This product includes software developed by the University of
|
---|
16 | * California, Berkeley and its contributors.
|
---|
17 | * 4. Neither the name of the University nor the names of its contributors
|
---|
18 | * may be used to endorse or promote products derived from this software
|
---|
19 | * without specific prior written permission.
|
---|
20 | *
|
---|
21 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
---|
22 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
---|
23 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
---|
24 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
---|
25 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
---|
26 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
---|
27 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
---|
28 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
---|
29 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
---|
30 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
---|
31 | * SUCH DAMAGE.
|
---|
32 | */
|
---|
33 |
|
---|
34 | #if defined(LIBC_SCCS) && !defined(lint)
|
---|
35 | static char sccsid[] = "@(#)random.c 8.1 (Berkeley) 6/4/93";
|
---|
36 | #endif /* LIBC_SCCS and not lint */
|
---|
37 |
|
---|
38 | #include <stdio.h>
|
---|
39 | #include <stdlib.h>
|
---|
40 |
|
---|
41 | /*
|
---|
42 | * random.c:
|
---|
43 | *
|
---|
44 | * An improved random number generation package. In addition to the standard
|
---|
45 | * rand()/srand() like interface, this package also has a special state info
|
---|
46 | * interface. The initstate() routine is called with a seed, an array of
|
---|
47 | * bytes, and a count of how many bytes are being passed in; this array is
|
---|
48 | * then initialized to contain information for random number generation with
|
---|
49 | * that much state information. Good sizes for the amount of state
|
---|
50 | * information are 32, 64, 128, and 256 bytes. The state can be switched by
|
---|
51 | * calling the setstate() routine with the same array as was initiallized
|
---|
52 | * with initstate(). By default, the package runs with 128 bytes of state
|
---|
53 | * information and generates far better random numbers than a linear
|
---|
54 | * congruential generator. If the amount of state information is less than
|
---|
55 | * 32 bytes, a simple linear congruential R.N.G. is used.
|
---|
56 | *
|
---|
57 | * Internally, the state information is treated as an array of longs; the
|
---|
58 | * zeroeth element of the array is the type of R.N.G. being used (small
|
---|
59 | * integer); the remainder of the array is the state information for the
|
---|
60 | * R.N.G. Thus, 32 bytes of state information will give 7 longs worth of
|
---|
61 | * state information, which will allow a degree seven polynomial. (Note:
|
---|
62 | * the zeroeth word of state information also has some other information
|
---|
63 | * stored in it -- see setstate() for details).
|
---|
64 | *
|
---|
65 | * The random number generation technique is a linear feedback shift register
|
---|
66 | * approach, employing trinomials (since there are fewer terms to sum up that
|
---|
67 | * way). In this approach, the least significant bit of all the numbers in
|
---|
68 | * the state table will act as a linear feedback shift register, and will
|
---|
69 | * have period 2^deg - 1 (where deg is the degree of the polynomial being
|
---|
70 | * used, assuming that the polynomial is irreducible and primitive). The
|
---|
71 | * higher order bits will have longer periods, since their values are also
|
---|
72 | * influenced by pseudo-random carries out of the lower bits. The total
|
---|
73 | * period of the generator is approximately deg*(2**deg - 1); thus doubling
|
---|
74 | * the amount of state information has a vast influence on the period of the
|
---|
75 | * generator. Note: the deg*(2**deg - 1) is an approximation only good for
|
---|
76 | * large deg, when the period of the shift register is the dominant factor.
|
---|
77 | * With deg equal to seven, the period is actually much longer than the
|
---|
78 | * 7*(2**7 - 1) predicted by this formula.
|
---|
79 | */
|
---|
80 |
|
---|
81 | /*
|
---|
82 | * For each of the currently supported random number generators, we have a
|
---|
83 | * break value on the amount of state information (you need at least this
|
---|
84 | * many bytes of state info to support this random number generator), a degree
|
---|
85 | * for the polynomial (actually a trinomial) that the R.N.G. is based on, and
|
---|
86 | * the separation between the two lower order coefficients of the trinomial.
|
---|
87 | */
|
---|
88 | #define TYPE_0 0 /* linear congruential */
|
---|
89 | #define BREAK_0 8
|
---|
90 | #define DEG_0 0
|
---|
91 | #define SEP_0 0
|
---|
92 |
|
---|
93 | #define TYPE_1 1 /* x**7 + x**3 + 1 */
|
---|
94 | #define BREAK_1 32
|
---|
95 | #define DEG_1 7
|
---|
96 | #define SEP_1 3
|
---|
97 |
|
---|
98 | #define TYPE_2 2 /* x**15 + x + 1 */
|
---|
99 | #define BREAK_2 64
|
---|
100 | #define DEG_2 15
|
---|
101 | #define SEP_2 1
|
---|
102 |
|
---|
103 | #define TYPE_3 3 /* x**31 + x**3 + 1 */
|
---|
104 | #define BREAK_3 128
|
---|
105 | #define DEG_3 31
|
---|
106 | #define SEP_3 3
|
---|
107 |
|
---|
108 | #define TYPE_4 4 /* x**63 + x + 1 */
|
---|
109 | #define BREAK_4 256
|
---|
110 | #define DEG_4 63
|
---|
111 | #define SEP_4 1
|
---|
112 |
|
---|
113 | /*
|
---|
114 | * Array versions of the above information to make code run faster --
|
---|
115 | * relies on fact that TYPE_i == i.
|
---|
116 | */
|
---|
117 | #define MAX_TYPES 5 /* max number of types above */
|
---|
118 |
|
---|
119 | static int degrees[MAX_TYPES] = { DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 };
|
---|
120 | static int seps [MAX_TYPES] = { SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 };
|
---|
121 |
|
---|
122 | /*
|
---|
123 | * Initially, everything is set up as if from:
|
---|
124 | *
|
---|
125 | * initstate(1, &randtbl, 128);
|
---|
126 | *
|
---|
127 | * Note that this initialization takes advantage of the fact that srandom()
|
---|
128 | * advances the front and rear pointers 10*rand_deg times, and hence the
|
---|
129 | * rear pointer which starts at 0 will also end up at zero; thus the zeroeth
|
---|
130 | * element of the state information, which contains info about the current
|
---|
131 | * position of the rear pointer is just
|
---|
132 | *
|
---|
133 | * MAX_TYPES * (rptr - state) + TYPE_3 == TYPE_3.
|
---|
134 | */
|
---|
135 |
|
---|
136 | static long randtbl[DEG_3 + 1] = {
|
---|
137 | TYPE_3,
|
---|
138 | 0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342, 0xde3b81e0, 0xdf0a6fb5,
|
---|
139 | 0xf103bc02, 0x48f340fb, 0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd,
|
---|
140 | 0x8c2e680f, 0xeb3d799f, 0xb11ee0b7, 0x2d436b86, 0xda672e2a, 0x1588ca88,
|
---|
141 | 0xe369735d, 0x904f35f7, 0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc,
|
---|
142 | 0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b, 0xf5ad9d0e, 0x8999220b,
|
---|
143 | 0x27fb47b9,
|
---|
144 | };
|
---|
145 |
|
---|
146 | /*
|
---|
147 | * fptr and rptr are two pointers into the state info, a front and a rear
|
---|
148 | * pointer. These two pointers are always rand_sep places aparts, as they
|
---|
149 | * cycle cyclically through the state information. (Yes, this does mean we
|
---|
150 | * could get away with just one pointer, but the code for random() is more
|
---|
151 | * efficient this way). The pointers are left positioned as they would be
|
---|
152 | * from the call
|
---|
153 | *
|
---|
154 | * initstate(1, randtbl, 128);
|
---|
155 | *
|
---|
156 | * (The position of the rear pointer, rptr, is really 0 (as explained above
|
---|
157 | * in the initialization of randtbl) because the state table pointer is set
|
---|
158 | * to point to randtbl[1] (as explained below).
|
---|
159 | */
|
---|
160 | static long *fptr = &randtbl[SEP_3 + 1];
|
---|
161 | static long *rptr = &randtbl[1];
|
---|
162 |
|
---|
163 | /*
|
---|
164 | * The following things are the pointer to the state information table, the
|
---|
165 | * type of the current generator, the degree of the current polynomial being
|
---|
166 | * used, and the separation between the two pointers. Note that for efficiency
|
---|
167 | * of random(), we remember the first location of the state information, not
|
---|
168 | * the zeroeth. Hence it is valid to access state[-1], which is used to
|
---|
169 | * store the type of the R.N.G. Also, we remember the last location, since
|
---|
170 | * this is more efficient than indexing every time to find the address of
|
---|
171 | * the last element to see if the front and rear pointers have wrapped.
|
---|
172 | */
|
---|
173 | static long *state = &randtbl[1];
|
---|
174 | static int rand_type = TYPE_3;
|
---|
175 | static int rand_deg = DEG_3;
|
---|
176 | static int rand_sep = SEP_3;
|
---|
177 | static long *end_ptr = &randtbl[DEG_3 + 1];
|
---|
178 |
|
---|
179 | /*
|
---|
180 | * srandom:
|
---|
181 | *
|
---|
182 | * Initialize the random number generator based on the given seed. If the
|
---|
183 | * type is the trivial no-state-information type, just remember the seed.
|
---|
184 | * Otherwise, initializes state[] based on the given "seed" via a linear
|
---|
185 | * congruential generator. Then, the pointers are set to known locations
|
---|
186 | * that are exactly rand_sep places apart. Lastly, it cycles the state
|
---|
187 | * information a given number of times to get rid of any initial dependencies
|
---|
188 | * introduced by the L.C.R.N.G. Note that the initialization of randtbl[]
|
---|
189 | * for default usage relies on values produced by this routine.
|
---|
190 | */
|
---|
191 | void
|
---|
192 | srandom(x)
|
---|
193 | u_int x;
|
---|
194 | {
|
---|
195 | register int i, j;
|
---|
196 |
|
---|
197 | if (rand_type == TYPE_0)
|
---|
198 | state[0] = x;
|
---|
199 | else {
|
---|
200 | j = 1;
|
---|
201 | state[0] = x;
|
---|
202 | for (i = 1; i < rand_deg; i++)
|
---|
203 | state[i] = 1103515245 * state[i - 1] + 12345;
|
---|
204 | fptr = &state[rand_sep];
|
---|
205 | rptr = &state[0];
|
---|
206 | for (i = 0; i < 10 * rand_deg; i++)
|
---|
207 | (void)random();
|
---|
208 | }
|
---|
209 | }
|
---|
210 |
|
---|
211 | /*
|
---|
212 | * initstate:
|
---|
213 | *
|
---|
214 | * Initialize the state information in the given array of n bytes for future
|
---|
215 | * random number generation. Based on the number of bytes we are given, and
|
---|
216 | * the break values for the different R.N.G.'s, we choose the best (largest)
|
---|
217 | * one we can and set things up for it. srandom() is then called to
|
---|
218 | * initialize the state information.
|
---|
219 | *
|
---|
220 | * Note that on return from srandom(), we set state[-1] to be the type
|
---|
221 | * multiplexed with the current value of the rear pointer; this is so
|
---|
222 | * successive calls to initstate() won't lose this information and will be
|
---|
223 | * able to restart with setstate().
|
---|
224 | *
|
---|
225 | * Note: the first thing we do is save the current state, if any, just like
|
---|
226 | * setstate() so that it doesn't matter when initstate is called.
|
---|
227 | *
|
---|
228 | * Returns a pointer to the old state.
|
---|
229 | */
|
---|
230 | char *
|
---|
231 | initstate(seed, arg_state, n)
|
---|
232 | u_int seed; /* seed for R.N.G. */
|
---|
233 | char *arg_state; /* pointer to state array */
|
---|
234 | size_t n; /* # bytes of state info */
|
---|
235 | {
|
---|
236 | register char *ostate = (char *)(&state[-1]);
|
---|
237 |
|
---|
238 | if (rand_type == TYPE_0)
|
---|
239 | state[-1] = rand_type;
|
---|
240 | else
|
---|
241 | state[-1] = MAX_TYPES * (rptr - state) + rand_type;
|
---|
242 | if (n < BREAK_0) {
|
---|
243 | (void)fprintf(stderr,
|
---|
244 | "random: not enough state (%d bytes); ignored.\n", n);
|
---|
245 | return(0);
|
---|
246 | }
|
---|
247 | if (n < BREAK_1) {
|
---|
248 | rand_type = TYPE_0;
|
---|
249 | rand_deg = DEG_0;
|
---|
250 | rand_sep = SEP_0;
|
---|
251 | } else if (n < BREAK_2) {
|
---|
252 | rand_type = TYPE_1;
|
---|
253 | rand_deg = DEG_1;
|
---|
254 | rand_sep = SEP_1;
|
---|
255 | } else if (n < BREAK_3) {
|
---|
256 | rand_type = TYPE_2;
|
---|
257 | rand_deg = DEG_2;
|
---|
258 | rand_sep = SEP_2;
|
---|
259 | } else if (n < BREAK_4) {
|
---|
260 | rand_type = TYPE_3;
|
---|
261 | rand_deg = DEG_3;
|
---|
262 | rand_sep = SEP_3;
|
---|
263 | } else {
|
---|
264 | rand_type = TYPE_4;
|
---|
265 | rand_deg = DEG_4;
|
---|
266 | rand_sep = SEP_4;
|
---|
267 | }
|
---|
268 | state = &(((long *)arg_state)[1]); /* first location */
|
---|
269 | end_ptr = &state[rand_deg]; /* must set end_ptr before srandom */
|
---|
270 | srandom(seed);
|
---|
271 | if (rand_type == TYPE_0)
|
---|
272 | state[-1] = rand_type;
|
---|
273 | else
|
---|
274 | state[-1] = MAX_TYPES*(rptr - state) + rand_type;
|
---|
275 | return(ostate);
|
---|
276 | }
|
---|
277 |
|
---|
278 | /*
|
---|
279 | * setstate:
|
---|
280 | *
|
---|
281 | * Restore the state from the given state array.
|
---|
282 | *
|
---|
283 | * Note: it is important that we also remember the locations of the pointers
|
---|
284 | * in the current state information, and restore the locations of the pointers
|
---|
285 | * from the old state information. This is done by multiplexing the pointer
|
---|
286 | * location into the zeroeth word of the state information.
|
---|
287 | *
|
---|
288 | * Note that due to the order in which things are done, it is OK to call
|
---|
289 | * setstate() with the same state as the current state.
|
---|
290 | *
|
---|
291 | * Returns a pointer to the old state information.
|
---|
292 | */
|
---|
293 | char *
|
---|
294 | setstate(arg_state)
|
---|
295 | const char *arg_state;
|
---|
296 | {
|
---|
297 | register long *new_state = (long *)arg_state;
|
---|
298 | register int type = new_state[0] % MAX_TYPES;
|
---|
299 | register int rear = new_state[0] / MAX_TYPES;
|
---|
300 | char *ostate = (char *)(&state[-1]);
|
---|
301 |
|
---|
302 | if (rand_type == TYPE_0)
|
---|
303 | state[-1] = rand_type;
|
---|
304 | else
|
---|
305 | state[-1] = MAX_TYPES * (rptr - state) + rand_type;
|
---|
306 | switch(type) {
|
---|
307 | case TYPE_0:
|
---|
308 | case TYPE_1:
|
---|
309 | case TYPE_2:
|
---|
310 | case TYPE_3:
|
---|
311 | case TYPE_4:
|
---|
312 | rand_type = type;
|
---|
313 | rand_deg = degrees[type];
|
---|
314 | rand_sep = seps[type];
|
---|
315 | break;
|
---|
316 | default:
|
---|
317 | (void)fprintf(stderr,
|
---|
318 | "random: state info corrupted; not changed.\n");
|
---|
319 | }
|
---|
320 | state = &new_state[1];
|
---|
321 | if (rand_type != TYPE_0) {
|
---|
322 | rptr = &state[rear];
|
---|
323 | fptr = &state[(rear + rand_sep) % rand_deg];
|
---|
324 | }
|
---|
325 | end_ptr = &state[rand_deg]; /* set end_ptr too */
|
---|
326 | return(ostate);
|
---|
327 | }
|
---|
328 |
|
---|
329 | /*
|
---|
330 | * random:
|
---|
331 | *
|
---|
332 | * If we are using the trivial TYPE_0 R.N.G., just do the old linear
|
---|
333 | * congruential bit. Otherwise, we do our fancy trinomial stuff, which is
|
---|
334 | * the same in all the other cases due to all the global variables that have
|
---|
335 | * been set up. The basic operation is to add the number at the rear pointer
|
---|
336 | * into the one at the front pointer. Then both pointers are advanced to
|
---|
337 | * the next location cyclically in the table. The value returned is the sum
|
---|
338 | * generated, reduced to 31 bits by throwing away the "least random" low bit.
|
---|
339 | *
|
---|
340 | * Note: the code takes advantage of the fact that both the front and
|
---|
341 | * rear pointers can't wrap on the same call by not testing the rear
|
---|
342 | * pointer if the front one has wrapped.
|
---|
343 | *
|
---|
344 | * Returns a 31-bit random number.
|
---|
345 | */
|
---|
346 | long
|
---|
347 | random()
|
---|
348 | {
|
---|
349 | long i;
|
---|
350 |
|
---|
351 | if (rand_type == TYPE_0)
|
---|
352 | i = state[0] = (state[0] * 1103515245 + 12345) & 0x7fffffff;
|
---|
353 | else {
|
---|
354 | *fptr += *rptr;
|
---|
355 | i = (*fptr >> 1) & 0x7fffffff; /* chucking least random bit */
|
---|
356 | if (++fptr >= end_ptr) {
|
---|
357 | fptr = state;
|
---|
358 | ++rptr;
|
---|
359 | } else if (++rptr >= end_ptr)
|
---|
360 | rptr = state;
|
---|
361 | }
|
---|
362 | return(i);
|
---|
363 | }
|
---|