1 | /*
|
---|
2 | * puff.c
|
---|
3 | * Copyright (C) 2002-2004 Mark Adler
|
---|
4 | * For conditions of distribution and use, see copyright notice in puff.h
|
---|
5 | * version 1.8, 9 Jan 2004
|
---|
6 | *
|
---|
7 | * puff.c is a simple inflate written to be an unambiguous way to specify the
|
---|
8 | * deflate format. It is not written for speed but rather simplicity. As a
|
---|
9 | * side benefit, this code might actually be useful when small code is more
|
---|
10 | * important than speed, such as bootstrap applications. For typical deflate
|
---|
11 | * data, zlib's inflate() is about four times as fast as puff(). zlib's
|
---|
12 | * inflate compiles to around 20K on my machine, whereas puff.c compiles to
|
---|
13 | * around 4K on my machine (a PowerPC using GNU cc). If the faster decode()
|
---|
14 | * function here is used, then puff() is only twice as slow as zlib's
|
---|
15 | * inflate().
|
---|
16 | *
|
---|
17 | * All dynamically allocated memory comes from the stack. The stack required
|
---|
18 | * is less than 2K bytes. This code is compatible with 16-bit int's and
|
---|
19 | * assumes that long's are at least 32 bits. puff.c uses the short data type,
|
---|
20 | * assumed to be 16 bits, for arrays in order to to conserve memory. The code
|
---|
21 | * works whether integers are stored big endian or little endian.
|
---|
22 | *
|
---|
23 | * In the comments below are "Format notes" that describe the inflate process
|
---|
24 | * and document some of the less obvious aspects of the format. This source
|
---|
25 | * code is meant to supplement RFC 1951, which formally describes the deflate
|
---|
26 | * format:
|
---|
27 | *
|
---|
28 | * http://www.zlib.org/rfc-deflate.html
|
---|
29 | */
|
---|
30 |
|
---|
31 | /*
|
---|
32 | * Change history:
|
---|
33 | *
|
---|
34 | * 1.0 10 Feb 2002 - First version
|
---|
35 | * 1.1 17 Feb 2002 - Clarifications of some comments and notes
|
---|
36 | * - Update puff() dest and source pointers on negative
|
---|
37 | * errors to facilitate debugging deflators
|
---|
38 | * - Remove longest from struct huffman -- not needed
|
---|
39 | * - Simplify offs[] index in construct()
|
---|
40 | * - Add input size and checking, using longjmp() to
|
---|
41 | * maintain easy readability
|
---|
42 | * - Use short data type for large arrays
|
---|
43 | * - Use pointers instead of long to specify source and
|
---|
44 | * destination sizes to avoid arbitrary 4 GB limits
|
---|
45 | * 1.2 17 Mar 2002 - Add faster version of decode(), doubles speed (!),
|
---|
46 | * but leave simple version for readabilty
|
---|
47 | * - Make sure invalid distances detected if pointers
|
---|
48 | * are 16 bits
|
---|
49 | * - Fix fixed codes table error
|
---|
50 | * - Provide a scanning mode for determining size of
|
---|
51 | * uncompressed data
|
---|
52 | * 1.3 20 Mar 2002 - Go back to lengths for puff() parameters [Jean-loup]
|
---|
53 | * - Add a puff.h file for the interface
|
---|
54 | * - Add braces in puff() for else do [Jean-loup]
|
---|
55 | * - Use indexes instead of pointers for readability
|
---|
56 | * 1.4 31 Mar 2002 - Simplify construct() code set check
|
---|
57 | * - Fix some comments
|
---|
58 | * - Add FIXLCODES #define
|
---|
59 | * 1.5 6 Apr 2002 - Minor comment fixes
|
---|
60 | * 1.6 7 Aug 2002 - Minor format changes
|
---|
61 | * 1.7 3 Mar 2003 - Added test code for distribution
|
---|
62 | * - Added zlib-like license
|
---|
63 | * 1.8 9 Jan 2004 - Added some comments on no distance codes case
|
---|
64 | */
|
---|
65 |
|
---|
66 | #include <setjmp.h> /* for setjmp(), longjmp(), and jmp_buf */
|
---|
67 | #include "puff.h" /* prototype for puff() */
|
---|
68 |
|
---|
69 | #define local static /* for local function definitions */
|
---|
70 | #define NIL ((unsigned char *)0) /* for no output option */
|
---|
71 |
|
---|
72 | /*
|
---|
73 | * Maximums for allocations and loops. It is not useful to change these --
|
---|
74 | * they are fixed by the deflate format.
|
---|
75 | */
|
---|
76 | #define MAXBITS 15 /* maximum bits in a code */
|
---|
77 | #define MAXLCODES 286 /* maximum number of literal/length codes */
|
---|
78 | #define MAXDCODES 30 /* maximum number of distance codes */
|
---|
79 | #define MAXCODES (MAXLCODES+MAXDCODES) /* maximum codes lengths to read */
|
---|
80 | #define FIXLCODES 288 /* number of fixed literal/length codes */
|
---|
81 |
|
---|
82 | /* input and output state */
|
---|
83 | struct state {
|
---|
84 | /* output state */
|
---|
85 | unsigned char *out; /* output buffer */
|
---|
86 | unsigned long outlen; /* available space at out */
|
---|
87 | unsigned long outcnt; /* bytes written to out so far */
|
---|
88 |
|
---|
89 | /* input state */
|
---|
90 | unsigned char *in; /* input buffer */
|
---|
91 | unsigned long inlen; /* available input at in */
|
---|
92 | unsigned long incnt; /* bytes read so far */
|
---|
93 | int bitbuf; /* bit buffer */
|
---|
94 | int bitcnt; /* number of bits in bit buffer */
|
---|
95 |
|
---|
96 | /* input limit error return state for bits() and decode() */
|
---|
97 | jmp_buf env;
|
---|
98 | };
|
---|
99 |
|
---|
100 | /*
|
---|
101 | * Return need bits from the input stream. This always leaves less than
|
---|
102 | * eight bits in the buffer. bits() works properly for need == 0.
|
---|
103 | *
|
---|
104 | * Format notes:
|
---|
105 | *
|
---|
106 | * - Bits are stored in bytes from the least significant bit to the most
|
---|
107 | * significant bit. Therefore bits are dropped from the bottom of the bit
|
---|
108 | * buffer, using shift right, and new bytes are appended to the top of the
|
---|
109 | * bit buffer, using shift left.
|
---|
110 | */
|
---|
111 | local int bits(struct state *s, int need)
|
---|
112 | {
|
---|
113 | long val; /* bit accumulator (can use up to 20 bits) */
|
---|
114 |
|
---|
115 | /* load at least need bits into val */
|
---|
116 | val = s->bitbuf;
|
---|
117 | while (s->bitcnt < need) {
|
---|
118 | if (s->incnt == s->inlen) longjmp(s->env, 1); /* out of input */
|
---|
119 | val |= (long)(s->in[s->incnt++]) << s->bitcnt; /* load eight bits */
|
---|
120 | s->bitcnt += 8;
|
---|
121 | }
|
---|
122 |
|
---|
123 | /* drop need bits and update buffer, always zero to seven bits left */
|
---|
124 | s->bitbuf = (int)(val >> need);
|
---|
125 | s->bitcnt -= need;
|
---|
126 |
|
---|
127 | /* return need bits, zeroing the bits above that */
|
---|
128 | return (int)(val & ((1L << need) - 1));
|
---|
129 | }
|
---|
130 |
|
---|
131 | /*
|
---|
132 | * Process a stored block.
|
---|
133 | *
|
---|
134 | * Format notes:
|
---|
135 | *
|
---|
136 | * - After the two-bit stored block type (00), the stored block length and
|
---|
137 | * stored bytes are byte-aligned for fast copying. Therefore any leftover
|
---|
138 | * bits in the byte that has the last bit of the type, as many as seven, are
|
---|
139 | * discarded. The value of the discarded bits are not defined and should not
|
---|
140 | * be checked against any expectation.
|
---|
141 | *
|
---|
142 | * - The second inverted copy of the stored block length does not have to be
|
---|
143 | * checked, but it's probably a good idea to do so anyway.
|
---|
144 | *
|
---|
145 | * - A stored block can have zero length. This is sometimes used to byte-align
|
---|
146 | * subsets of the compressed data for random access or partial recovery.
|
---|
147 | */
|
---|
148 | local int stored(struct state *s)
|
---|
149 | {
|
---|
150 | unsigned len; /* length of stored block */
|
---|
151 |
|
---|
152 | /* discard leftover bits from current byte (assumes s->bitcnt < 8) */
|
---|
153 | s->bitbuf = 0;
|
---|
154 | s->bitcnt = 0;
|
---|
155 |
|
---|
156 | /* get length and check against its one's complement */
|
---|
157 | if (s->incnt + 4 > s->inlen) return 2; /* not enough input */
|
---|
158 | len = s->in[s->incnt++];
|
---|
159 | len |= s->in[s->incnt++] << 8;
|
---|
160 | if (s->in[s->incnt++] != (~len & 0xff) ||
|
---|
161 | s->in[s->incnt++] != ((~len >> 8) & 0xff))
|
---|
162 | return -2; /* didn't match complement! */
|
---|
163 |
|
---|
164 | /* copy len bytes from in to out */
|
---|
165 | if (s->incnt + len > s->inlen) return 2; /* not enough input */
|
---|
166 | if (s->out != NIL) {
|
---|
167 | if (s->outcnt + len > s->outlen)
|
---|
168 | return 1; /* not enough output space */
|
---|
169 | while (len--)
|
---|
170 | s->out[s->outcnt++] = s->in[s->incnt++];
|
---|
171 | }
|
---|
172 | else { /* just scanning */
|
---|
173 | s->outcnt += len;
|
---|
174 | s->incnt += len;
|
---|
175 | }
|
---|
176 |
|
---|
177 | /* done with a valid stored block */
|
---|
178 | return 0;
|
---|
179 | }
|
---|
180 |
|
---|
181 | /*
|
---|
182 | * Huffman code decoding tables. count[1..MAXBITS] is the number of symbols of
|
---|
183 | * each length, which for a canonical code are stepped through in order.
|
---|
184 | * symbol[] are the symbol values in canonical order, where the number of
|
---|
185 | * entries is the sum of the counts in count[]. The decoding process can be
|
---|
186 | * seen in the function decode() below.
|
---|
187 | */
|
---|
188 | struct huffman {
|
---|
189 | short *count; /* number of symbols of each length */
|
---|
190 | short *symbol; /* canonically ordered symbols */
|
---|
191 | };
|
---|
192 |
|
---|
193 | /*
|
---|
194 | * Decode a code from the stream s using huffman table h. Return the symbol or
|
---|
195 | * a negative value if there is an error. If all of the lengths are zero, i.e.
|
---|
196 | * an empty code, or if the code is incomplete and an invalid code is received,
|
---|
197 | * then -9 is returned after reading MAXBITS bits.
|
---|
198 | *
|
---|
199 | * Format notes:
|
---|
200 | *
|
---|
201 | * - The codes as stored in the compressed data are bit-reversed relative to
|
---|
202 | * a simple integer ordering of codes of the same lengths. Hence below the
|
---|
203 | * bits are pulled from the compressed data one at a time and used to
|
---|
204 | * build the code value reversed from what is in the stream in order to
|
---|
205 | * permit simple integer comparisons for decoding. A table-based decoding
|
---|
206 | * scheme (as used in zlib) does not need to do this reversal.
|
---|
207 | *
|
---|
208 | * - The first code for the shortest length is all zeros. Subsequent codes of
|
---|
209 | * the same length are simply integer increments of the previous code. When
|
---|
210 | * moving up a length, a zero bit is appended to the code. For a complete
|
---|
211 | * code, the last code of the longest length will be all ones.
|
---|
212 | *
|
---|
213 | * - Incomplete codes are handled by this decoder, since they are permitted
|
---|
214 | * in the deflate format. See the format notes for fixed() and dynamic().
|
---|
215 | */
|
---|
216 | #ifdef SLOW
|
---|
217 | local int decode(struct state *s, struct huffman *h)
|
---|
218 | {
|
---|
219 | int len; /* current number of bits in code */
|
---|
220 | int code; /* len bits being decoded */
|
---|
221 | int first; /* first code of length len */
|
---|
222 | int count; /* number of codes of length len */
|
---|
223 | int index; /* index of first code of length len in symbol table */
|
---|
224 |
|
---|
225 | code = first = index = 0;
|
---|
226 | for (len = 1; len <= MAXBITS; len++) {
|
---|
227 | code |= bits(s, 1); /* get next bit */
|
---|
228 | count = h->count[len];
|
---|
229 | if (code < first + count) /* if length len, return symbol */
|
---|
230 | return h->symbol[index + (code - first)];
|
---|
231 | index += count; /* else update for next length */
|
---|
232 | first += count;
|
---|
233 | first <<= 1;
|
---|
234 | code <<= 1;
|
---|
235 | }
|
---|
236 | return -9; /* ran out of codes */
|
---|
237 | }
|
---|
238 |
|
---|
239 | /*
|
---|
240 | * A faster version of decode() for real applications of this code. It's not
|
---|
241 | * as readable, but it makes puff() twice as fast. And it only makes the code
|
---|
242 | * a few percent larger.
|
---|
243 | */
|
---|
244 | #else /* !SLOW */
|
---|
245 | local int decode(struct state *s, struct huffman *h)
|
---|
246 | {
|
---|
247 | int len; /* current number of bits in code */
|
---|
248 | int code; /* len bits being decoded */
|
---|
249 | int first; /* first code of length len */
|
---|
250 | int count; /* number of codes of length len */
|
---|
251 | int index; /* index of first code of length len in symbol table */
|
---|
252 | int bitbuf; /* bits from stream */
|
---|
253 | int left; /* bits left in next or left to process */
|
---|
254 | short *next; /* next number of codes */
|
---|
255 |
|
---|
256 | bitbuf = s->bitbuf;
|
---|
257 | left = s->bitcnt;
|
---|
258 | code = first = index = 0;
|
---|
259 | len = 1;
|
---|
260 | next = h->count + 1;
|
---|
261 | while (1) {
|
---|
262 | while (left--) {
|
---|
263 | code |= bitbuf & 1;
|
---|
264 | bitbuf >>= 1;
|
---|
265 | count = *next++;
|
---|
266 | if (code < first + count) { /* if length len, return symbol */
|
---|
267 | s->bitbuf = bitbuf;
|
---|
268 | s->bitcnt = (s->bitcnt - len) & 7;
|
---|
269 | return h->symbol[index + (code - first)];
|
---|
270 | }
|
---|
271 | index += count; /* else update for next length */
|
---|
272 | first += count;
|
---|
273 | first <<= 1;
|
---|
274 | code <<= 1;
|
---|
275 | len++;
|
---|
276 | }
|
---|
277 | left = (MAXBITS+1) - len;
|
---|
278 | if (left == 0) break;
|
---|
279 | if (s->incnt == s->inlen) longjmp(s->env, 1); /* out of input */
|
---|
280 | bitbuf = s->in[s->incnt++];
|
---|
281 | if (left > 8) left = 8;
|
---|
282 | }
|
---|
283 | return -9; /* ran out of codes */
|
---|
284 | }
|
---|
285 | #endif /* SLOW */
|
---|
286 |
|
---|
287 | /*
|
---|
288 | * Given the list of code lengths length[0..n-1] representing a canonical
|
---|
289 | * Huffman code for n symbols, construct the tables required to decode those
|
---|
290 | * codes. Those tables are the number of codes of each length, and the symbols
|
---|
291 | * sorted by length, retaining their original order within each length. The
|
---|
292 | * return value is zero for a complete code set, negative for an over-
|
---|
293 | * subscribed code set, and positive for an incomplete code set. The tables
|
---|
294 | * can be used if the return value is zero or positive, but they cannot be used
|
---|
295 | * if the return value is negative. If the return value is zero, it is not
|
---|
296 | * possible for decode() using that table to return an error--any stream of
|
---|
297 | * enough bits will resolve to a symbol. If the return value is positive, then
|
---|
298 | * it is possible for decode() using that table to return an error for received
|
---|
299 | * codes past the end of the incomplete lengths.
|
---|
300 | *
|
---|
301 | * Not used by decode(), but used for error checking, h->count[0] is the number
|
---|
302 | * of the n symbols not in the code. So n - h->count[0] is the number of
|
---|
303 | * codes. This is useful for checking for incomplete codes that have more than
|
---|
304 | * one symbol, which is an error in a dynamic block.
|
---|
305 | *
|
---|
306 | * Assumption: for all i in 0..n-1, 0 <= length[i] <= MAXBITS
|
---|
307 | * This is assured by the construction of the length arrays in dynamic() and
|
---|
308 | * fixed() and is not verified by construct().
|
---|
309 | *
|
---|
310 | * Format notes:
|
---|
311 | *
|
---|
312 | * - Permitted and expected examples of incomplete codes are one of the fixed
|
---|
313 | * codes and any code with a single symbol which in deflate is coded as one
|
---|
314 | * bit instead of zero bits. See the format notes for fixed() and dynamic().
|
---|
315 | *
|
---|
316 | * - Within a given code length, the symbols are kept in ascending order for
|
---|
317 | * the code bits definition.
|
---|
318 | */
|
---|
319 | local int construct(struct huffman *h, short *length, int n)
|
---|
320 | {
|
---|
321 | int symbol; /* current symbol when stepping through length[] */
|
---|
322 | int len; /* current length when stepping through h->count[] */
|
---|
323 | int left; /* number of possible codes left of current length */
|
---|
324 | short offs[MAXBITS+1]; /* offsets in symbol table for each length */
|
---|
325 |
|
---|
326 | /* count number of codes of each length */
|
---|
327 | for (len = 0; len <= MAXBITS; len++)
|
---|
328 | h->count[len] = 0;
|
---|
329 | for (symbol = 0; symbol < n; symbol++)
|
---|
330 | (h->count[length[symbol]])++; /* assumes lengths are within bounds */
|
---|
331 | if (h->count[0] == n) /* no codes! */
|
---|
332 | return 0; /* complete, but decode() will fail */
|
---|
333 |
|
---|
334 | /* check for an over-subscribed or incomplete set of lengths */
|
---|
335 | left = 1; /* one possible code of zero length */
|
---|
336 | for (len = 1; len <= MAXBITS; len++) {
|
---|
337 | left <<= 1; /* one more bit, double codes left */
|
---|
338 | left -= h->count[len]; /* deduct count from possible codes */
|
---|
339 | if (left < 0) return left; /* over-subscribed--return negative */
|
---|
340 | } /* left > 0 means incomplete */
|
---|
341 |
|
---|
342 | /* generate offsets into symbol table for each length for sorting */
|
---|
343 | offs[1] = 0;
|
---|
344 | for (len = 1; len < MAXBITS; len++)
|
---|
345 | offs[len + 1] = offs[len] + h->count[len];
|
---|
346 |
|
---|
347 | /*
|
---|
348 | * put symbols in table sorted by length, by symbol order within each
|
---|
349 | * length
|
---|
350 | */
|
---|
351 | for (symbol = 0; symbol < n; symbol++)
|
---|
352 | if (length[symbol] != 0)
|
---|
353 | h->symbol[offs[length[symbol]]++] = symbol;
|
---|
354 |
|
---|
355 | /* return zero for complete set, positive for incomplete set */
|
---|
356 | return left;
|
---|
357 | }
|
---|
358 |
|
---|
359 | /*
|
---|
360 | * Decode literal/length and distance codes until an end-of-block code.
|
---|
361 | *
|
---|
362 | * Format notes:
|
---|
363 | *
|
---|
364 | * - Compressed data that is after the block type if fixed or after the code
|
---|
365 | * description if dynamic is a combination of literals and length/distance
|
---|
366 | * pairs terminated by and end-of-block code. Literals are simply Huffman
|
---|
367 | * coded bytes. A length/distance pair is a coded length followed by a
|
---|
368 | * coded distance to represent a string that occurs earlier in the
|
---|
369 | * uncompressed data that occurs again at the current location.
|
---|
370 | *
|
---|
371 | * - Literals, lengths, and the end-of-block code are combined into a single
|
---|
372 | * code of up to 286 symbols. They are 256 literals (0..255), 29 length
|
---|
373 | * symbols (257..285), and the end-of-block symbol (256).
|
---|
374 | *
|
---|
375 | * - There are 256 possible lengths (3..258), and so 29 symbols are not enough
|
---|
376 | * to represent all of those. Lengths 3..10 and 258 are in fact represented
|
---|
377 | * by just a length symbol. Lengths 11..257 are represented as a symbol and
|
---|
378 | * some number of extra bits that are added as an integer to the base length
|
---|
379 | * of the length symbol. The number of extra bits is determined by the base
|
---|
380 | * length symbol. These are in the static arrays below, lens[] for the base
|
---|
381 | * lengths and lext[] for the corresponding number of extra bits.
|
---|
382 | *
|
---|
383 | * - The reason that 258 gets its own symbol is that the longest length is used
|
---|
384 | * often in highly redundant files. Note that 258 can also be coded as the
|
---|
385 | * base value 227 plus the maximum extra value of 31. While a good deflate
|
---|
386 | * should never do this, it is not an error, and should be decoded properly.
|
---|
387 | *
|
---|
388 | * - If a length is decoded, including its extra bits if any, then it is
|
---|
389 | * followed a distance code. There are up to 30 distance symbols. Again
|
---|
390 | * there are many more possible distances (1..32768), so extra bits are added
|
---|
391 | * to a base value represented by the symbol. The distances 1..4 get their
|
---|
392 | * own symbol, but the rest require extra bits. The base distances and
|
---|
393 | * corresponding number of extra bits are below in the static arrays dist[]
|
---|
394 | * and dext[].
|
---|
395 | *
|
---|
396 | * - Literal bytes are simply written to the output. A length/distance pair is
|
---|
397 | * an instruction to copy previously uncompressed bytes to the output. The
|
---|
398 | * copy is from distance bytes back in the output stream, copying for length
|
---|
399 | * bytes.
|
---|
400 | *
|
---|
401 | * - Distances pointing before the beginning of the output data are not
|
---|
402 | * permitted.
|
---|
403 | *
|
---|
404 | * - Overlapped copies, where the length is greater than the distance, are
|
---|
405 | * allowed and common. For example, a distance of one and a length of 258
|
---|
406 | * simply copies the last byte 258 times. A distance of four and a length of
|
---|
407 | * twelve copies the last four bytes three times. A simple forward copy
|
---|
408 | * ignoring whether the length is greater than the distance or not implements
|
---|
409 | * this correctly. You should not use memcpy() since its behavior is not
|
---|
410 | * defined for overlapped arrays. You should not use memmove() or bcopy()
|
---|
411 | * since though their behavior -is- defined for overlapping arrays, it is
|
---|
412 | * defined to do the wrong thing in this case.
|
---|
413 | */
|
---|
414 | local int codes(struct state *s,
|
---|
415 | struct huffman *lencode,
|
---|
416 | struct huffman *distcode)
|
---|
417 | {
|
---|
418 | int symbol; /* decoded symbol */
|
---|
419 | int len; /* length for copy */
|
---|
420 | unsigned dist; /* distance for copy */
|
---|
421 | static const short lens[29] = { /* Size base for length codes 257..285 */
|
---|
422 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
|
---|
423 | 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258};
|
---|
424 | static const short lext[29] = { /* Extra bits for length codes 257..285 */
|
---|
425 | 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
|
---|
426 | 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0};
|
---|
427 | static const short dists[30] = { /* Offset base for distance codes 0..29 */
|
---|
428 | 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
|
---|
429 | 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
|
---|
430 | 8193, 12289, 16385, 24577};
|
---|
431 | static const short dext[30] = { /* Extra bits for distance codes 0..29 */
|
---|
432 | 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
|
---|
433 | 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
|
---|
434 | 12, 12, 13, 13};
|
---|
435 |
|
---|
436 | /* decode literals and length/distance pairs */
|
---|
437 | do {
|
---|
438 | symbol = decode(s, lencode);
|
---|
439 | if (symbol < 0) return symbol; /* invalid symbol */
|
---|
440 | if (symbol < 256) { /* literal: symbol is the byte */
|
---|
441 | /* write out the literal */
|
---|
442 | if (s->out != NIL) {
|
---|
443 | if (s->outcnt == s->outlen) return 1;
|
---|
444 | s->out[s->outcnt] = symbol;
|
---|
445 | }
|
---|
446 | s->outcnt++;
|
---|
447 | }
|
---|
448 | else if (symbol > 256) { /* length */
|
---|
449 | /* get and compute length */
|
---|
450 | symbol -= 257;
|
---|
451 | if (symbol >= 29) return -9; /* invalid fixed code */
|
---|
452 | len = lens[symbol] + bits(s, lext[symbol]);
|
---|
453 |
|
---|
454 | /* get and check distance */
|
---|
455 | symbol = decode(s, distcode);
|
---|
456 | if (symbol < 0) return symbol; /* invalid symbol */
|
---|
457 | dist = dists[symbol] + bits(s, dext[symbol]);
|
---|
458 | if (dist > s->outcnt)
|
---|
459 | return -10; /* distance too far back */
|
---|
460 |
|
---|
461 | /* copy length bytes from distance bytes back */
|
---|
462 | if (s->out != NIL) {
|
---|
463 | if (s->outcnt + len > s->outlen) return 1;
|
---|
464 | while (len--) {
|
---|
465 | s->out[s->outcnt] = s->out[s->outcnt - dist];
|
---|
466 | s->outcnt++;
|
---|
467 | }
|
---|
468 | }
|
---|
469 | else
|
---|
470 | s->outcnt += len;
|
---|
471 | }
|
---|
472 | } while (symbol != 256); /* end of block symbol */
|
---|
473 |
|
---|
474 | /* done with a valid fixed or dynamic block */
|
---|
475 | return 0;
|
---|
476 | }
|
---|
477 |
|
---|
478 | /*
|
---|
479 | * Process a fixed codes block.
|
---|
480 | *
|
---|
481 | * Format notes:
|
---|
482 | *
|
---|
483 | * - This block type can be useful for compressing small amounts of data for
|
---|
484 | * which the size of the code descriptions in a dynamic block exceeds the
|
---|
485 | * benefit of custom codes for that block. For fixed codes, no bits are
|
---|
486 | * spent on code descriptions. Instead the code lengths for literal/length
|
---|
487 | * codes and distance codes are fixed. The specific lengths for each symbol
|
---|
488 | * can be seen in the "for" loops below.
|
---|
489 | *
|
---|
490 | * - The literal/length code is complete, but has two symbols that are invalid
|
---|
491 | * and should result in an error if received. This cannot be implemented
|
---|
492 | * simply as an incomplete code since those two symbols are in the "middle"
|
---|
493 | * of the code. They are eight bits long and the longest literal/length\
|
---|
494 | * code is nine bits. Therefore the code must be constructed with those
|
---|
495 | * symbols, and the invalid symbols must be detected after decoding.
|
---|
496 | *
|
---|
497 | * - The fixed distance codes also have two invalid symbols that should result
|
---|
498 | * in an error if received. Since all of the distance codes are the same
|
---|
499 | * length, this can be implemented as an incomplete code. Then the invalid
|
---|
500 | * codes are detected while decoding.
|
---|
501 | */
|
---|
502 | local int fixed(struct state *s)
|
---|
503 | {
|
---|
504 | static int virgin = 1;
|
---|
505 | static short lencnt[MAXBITS+1], lensym[FIXLCODES];
|
---|
506 | static short distcnt[MAXBITS+1], distsym[MAXDCODES];
|
---|
507 | static struct huffman lencode = {lencnt, lensym};
|
---|
508 | static struct huffman distcode = {distcnt, distsym};
|
---|
509 |
|
---|
510 | /* build fixed huffman tables if first call (may not be thread safe) */
|
---|
511 | if (virgin) {
|
---|
512 | int symbol;
|
---|
513 | short lengths[FIXLCODES];
|
---|
514 |
|
---|
515 | /* literal/length table */
|
---|
516 | for (symbol = 0; symbol < 144; symbol++)
|
---|
517 | lengths[symbol] = 8;
|
---|
518 | for (; symbol < 256; symbol++)
|
---|
519 | lengths[symbol] = 9;
|
---|
520 | for (; symbol < 280; symbol++)
|
---|
521 | lengths[symbol] = 7;
|
---|
522 | for (; symbol < FIXLCODES; symbol++)
|
---|
523 | lengths[symbol] = 8;
|
---|
524 | construct(&lencode, lengths, FIXLCODES);
|
---|
525 |
|
---|
526 | /* distance table */
|
---|
527 | for (symbol = 0; symbol < MAXDCODES; symbol++)
|
---|
528 | lengths[symbol] = 5;
|
---|
529 | construct(&distcode, lengths, MAXDCODES);
|
---|
530 |
|
---|
531 | /* do this just once */
|
---|
532 | virgin = 0;
|
---|
533 | }
|
---|
534 |
|
---|
535 | /* decode data until end-of-block code */
|
---|
536 | return codes(s, &lencode, &distcode);
|
---|
537 | }
|
---|
538 |
|
---|
539 | /*
|
---|
540 | * Process a dynamic codes block.
|
---|
541 | *
|
---|
542 | * Format notes:
|
---|
543 | *
|
---|
544 | * - A dynamic block starts with a description of the literal/length and
|
---|
545 | * distance codes for that block. New dynamic blocks allow the compressor to
|
---|
546 | * rapidly adapt to changing data with new codes optimized for that data.
|
---|
547 | *
|
---|
548 | * - The codes used by the deflate format are "canonical", which means that
|
---|
549 | * the actual bits of the codes are generated in an unambiguous way simply
|
---|
550 | * from the number of bits in each code. Therefore the code descriptions
|
---|
551 | * are simply a list of code lengths for each symbol.
|
---|
552 | *
|
---|
553 | * - The code lengths are stored in order for the symbols, so lengths are
|
---|
554 | * provided for each of the literal/length symbols, and for each of the
|
---|
555 | * distance symbols.
|
---|
556 | *
|
---|
557 | * - If a symbol is not used in the block, this is represented by a zero as
|
---|
558 | * as the code length. This does not mean a zero-length code, but rather
|
---|
559 | * that no code should be created for this symbol. There is no way in the
|
---|
560 | * deflate format to represent a zero-length code.
|
---|
561 | *
|
---|
562 | * - The maximum number of bits in a code is 15, so the possible lengths for
|
---|
563 | * any code are 1..15.
|
---|
564 | *
|
---|
565 | * - The fact that a length of zero is not permitted for a code has an
|
---|
566 | * interesting consequence. Normally if only one symbol is used for a given
|
---|
567 | * code, then in fact that code could be represented with zero bits. However
|
---|
568 | * in deflate, that code has to be at least one bit. So for example, if
|
---|
569 | * only a single distance base symbol appears in a block, then it will be
|
---|
570 | * represented by a single code of length one, in particular one 0 bit. This
|
---|
571 | * is an incomplete code, since if a 1 bit is received, it has no meaning,
|
---|
572 | * and should result in an error. So incomplete distance codes of one symbol
|
---|
573 | * should be permitted, and the receipt of invalid codes should be handled.
|
---|
574 | *
|
---|
575 | * - It is also possible to have a single literal/length code, but that code
|
---|
576 | * must be the end-of-block code, since every dynamic block has one. This
|
---|
577 | * is not the most efficient way to create an empty block (an empty fixed
|
---|
578 | * block is fewer bits), but it is allowed by the format. So incomplete
|
---|
579 | * literal/length codes of one symbol should also be permitted.
|
---|
580 | *
|
---|
581 | * - If there are only literal codes and no lengths, then there are no distance
|
---|
582 | * codes. This is represented by one distance code with zero bits.
|
---|
583 | *
|
---|
584 | * - The list of up to 286 length/literal lengths and up to 30 distance lengths
|
---|
585 | * are themselves compressed using Huffman codes and run-length encoding. In
|
---|
586 | * the list of code lengths, a 0 symbol means no code, a 1..15 symbol means
|
---|
587 | * that length, and the symbols 16, 17, and 18 are run-length instructions.
|
---|
588 | * Each of 16, 17, and 18 are follwed by extra bits to define the length of
|
---|
589 | * the run. 16 copies the last length 3 to 6 times. 17 represents 3 to 10
|
---|
590 | * zero lengths, and 18 represents 11 to 138 zero lengths. Unused symbols
|
---|
591 | * are common, hence the special coding for zero lengths.
|
---|
592 | *
|
---|
593 | * - The symbols for 0..18 are Huffman coded, and so that code must be
|
---|
594 | * described first. This is simply a sequence of up to 19 three-bit values
|
---|
595 | * representing no code (0) or the code length for that symbol (1..7).
|
---|
596 | *
|
---|
597 | * - A dynamic block starts with three fixed-size counts from which is computed
|
---|
598 | * the number of literal/length code lengths, the number of distance code
|
---|
599 | * lengths, and the number of code length code lengths (ok, you come up with
|
---|
600 | * a better name!) in the code descriptions. For the literal/length and
|
---|
601 | * distance codes, lengths after those provided are considered zero, i.e. no
|
---|
602 | * code. The code length code lengths are received in a permuted order (see
|
---|
603 | * the order[] array below) to make a short code length code length list more
|
---|
604 | * likely. As it turns out, very short and very long codes are less likely
|
---|
605 | * to be seen in a dynamic code description, hence what may appear initially
|
---|
606 | * to be a peculiar ordering.
|
---|
607 | *
|
---|
608 | * - Given the number of literal/length code lengths (nlen) and distance code
|
---|
609 | * lengths (ndist), then they are treated as one long list of nlen + ndist
|
---|
610 | * code lengths. Therefore run-length coding can and often does cross the
|
---|
611 | * boundary between the two sets of lengths.
|
---|
612 | *
|
---|
613 | * - So to summarize, the code description at the start of a dynamic block is
|
---|
614 | * three counts for the number of code lengths for the literal/length codes,
|
---|
615 | * the distance codes, and the code length codes. This is followed by the
|
---|
616 | * code length code lengths, three bits each. This is used to construct the
|
---|
617 | * code length code which is used to read the remainder of the lengths. Then
|
---|
618 | * the literal/length code lengths and distance lengths are read as a single
|
---|
619 | * set of lengths using the code length codes. Codes are constructed from
|
---|
620 | * the resulting two sets of lengths, and then finally you can start
|
---|
621 | * decoding actual compressed data in the block.
|
---|
622 | *
|
---|
623 | * - For reference, a "typical" size for the code description in a dynamic
|
---|
624 | * block is around 80 bytes.
|
---|
625 | */
|
---|
626 | local int dynamic(struct state *s)
|
---|
627 | {
|
---|
628 | int nlen, ndist, ncode; /* number of lengths in descriptor */
|
---|
629 | int index; /* index of lengths[] */
|
---|
630 | int err; /* construct() return value */
|
---|
631 | short lengths[MAXCODES]; /* descriptor code lengths */
|
---|
632 | short lencnt[MAXBITS+1], lensym[MAXLCODES]; /* lencode memory */
|
---|
633 | short distcnt[MAXBITS+1], distsym[MAXDCODES]; /* distcode memory */
|
---|
634 | struct huffman lencode = {lencnt, lensym}; /* length code */
|
---|
635 | struct huffman distcode = {distcnt, distsym}; /* distance code */
|
---|
636 | static const short order[19] = /* permutation of code length codes */
|
---|
637 | {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
|
---|
638 |
|
---|
639 | /* get number of lengths in each table, check lengths */
|
---|
640 | nlen = bits(s, 5) + 257;
|
---|
641 | ndist = bits(s, 5) + 1;
|
---|
642 | ncode = bits(s, 4) + 4;
|
---|
643 | if (nlen > MAXLCODES || ndist > MAXDCODES)
|
---|
644 | return -3; /* bad counts */
|
---|
645 |
|
---|
646 | /* read code length code lengths (really), missing lengths are zero */
|
---|
647 | for (index = 0; index < ncode; index++)
|
---|
648 | lengths[order[index]] = bits(s, 3);
|
---|
649 | for (; index < 19; index++)
|
---|
650 | lengths[order[index]] = 0;
|
---|
651 |
|
---|
652 | /* build huffman table for code lengths codes (use lencode temporarily) */
|
---|
653 | err = construct(&lencode, lengths, 19);
|
---|
654 | if (err != 0) return -4; /* require complete code set here */
|
---|
655 |
|
---|
656 | /* read length/literal and distance code length tables */
|
---|
657 | index = 0;
|
---|
658 | while (index < nlen + ndist) {
|
---|
659 | int symbol; /* decoded value */
|
---|
660 | int len; /* last length to repeat */
|
---|
661 |
|
---|
662 | symbol = decode(s, &lencode);
|
---|
663 | if (symbol < 16) /* length in 0..15 */
|
---|
664 | lengths[index++] = symbol;
|
---|
665 | else { /* repeat instruction */
|
---|
666 | len = 0; /* assume repeating zeros */
|
---|
667 | if (symbol == 16) { /* repeat last length 3..6 times */
|
---|
668 | if (index == 0) return -5; /* no last length! */
|
---|
669 | len = lengths[index - 1]; /* last length */
|
---|
670 | symbol = 3 + bits(s, 2);
|
---|
671 | }
|
---|
672 | else if (symbol == 17) /* repeat zero 3..10 times */
|
---|
673 | symbol = 3 + bits(s, 3);
|
---|
674 | else /* == 18, repeat zero 11..138 times */
|
---|
675 | symbol = 11 + bits(s, 7);
|
---|
676 | if (index + symbol > nlen + ndist)
|
---|
677 | return -6; /* too many lengths! */
|
---|
678 | while (symbol--) /* repeat last or zero symbol times */
|
---|
679 | lengths[index++] = len;
|
---|
680 | }
|
---|
681 | }
|
---|
682 |
|
---|
683 | /* build huffman table for literal/length codes */
|
---|
684 | err = construct(&lencode, lengths, nlen);
|
---|
685 | if (err < 0 || (err > 0 && nlen - lencode.count[0] != 1))
|
---|
686 | return -7; /* only allow incomplete codes if just one code */
|
---|
687 |
|
---|
688 | /* build huffman table for distance codes */
|
---|
689 | err = construct(&distcode, lengths + nlen, ndist);
|
---|
690 | if (err < 0 || (err > 0 && ndist - distcode.count[0] != 1))
|
---|
691 | return -8; /* only allow incomplete codes if just one code */
|
---|
692 |
|
---|
693 | /* decode data until end-of-block code */
|
---|
694 | return codes(s, &lencode, &distcode);
|
---|
695 | }
|
---|
696 |
|
---|
697 | /*
|
---|
698 | * Inflate source to dest. On return, destlen and sourcelen are updated to the
|
---|
699 | * size of the uncompressed data and the size of the deflate data respectively.
|
---|
700 | * On success, the return value of puff() is zero. If there is an error in the
|
---|
701 | * source data, i.e. it is not in the deflate format, then a negative value is
|
---|
702 | * returned. If there is not enough input available or there is not enough
|
---|
703 | * output space, then a positive error is returned. In that case, destlen and
|
---|
704 | * sourcelen are not updated to facilitate retrying from the beginning with the
|
---|
705 | * provision of more input data or more output space. In the case of invalid
|
---|
706 | * inflate data (a negative error), the dest and source pointers are updated to
|
---|
707 | * facilitate the debugging of deflators.
|
---|
708 | *
|
---|
709 | * puff() also has a mode to determine the size of the uncompressed output with
|
---|
710 | * no output written. For this dest must be (unsigned char *)0. In this case,
|
---|
711 | * the input value of *destlen is ignored, and on return *destlen is set to the
|
---|
712 | * size of the uncompressed output.
|
---|
713 | *
|
---|
714 | * The return codes are:
|
---|
715 | *
|
---|
716 | * 2: available inflate data did not terminate
|
---|
717 | * 1: output space exhausted before completing inflate
|
---|
718 | * 0: successful inflate
|
---|
719 | * -1: invalid block type (type == 3)
|
---|
720 | * -2: stored block length did not match one's complement
|
---|
721 | * -3: dynamic block code description: too many length or distance codes
|
---|
722 | * -4: dynamic block code description: code lengths codes incomplete
|
---|
723 | * -5: dynamic block code description: repeat lengths with no first length
|
---|
724 | * -6: dynamic block code description: repeat more than specified lengths
|
---|
725 | * -7: dynamic block code description: invalid literal/length code lengths
|
---|
726 | * -8: dynamic block code description: invalid distance code lengths
|
---|
727 | * -9: invalid literal/length or distance code in fixed or dynamic block
|
---|
728 | * -10: distance is too far back in fixed or dynamic block
|
---|
729 | *
|
---|
730 | * Format notes:
|
---|
731 | *
|
---|
732 | * - Three bits are read for each block to determine the kind of block and
|
---|
733 | * whether or not it is the last block. Then the block is decoded and the
|
---|
734 | * process repeated if it was not the last block.
|
---|
735 | *
|
---|
736 | * - The leftover bits in the last byte of the deflate data after the last
|
---|
737 | * block (if it was a fixed or dynamic block) are undefined and have no
|
---|
738 | * expected values to check.
|
---|
739 | */
|
---|
740 | int puff(unsigned char *dest, /* pointer to destination pointer */
|
---|
741 | unsigned long *destlen, /* amount of output space */
|
---|
742 | unsigned char *source, /* pointer to source data pointer */
|
---|
743 | unsigned long *sourcelen) /* amount of input available */
|
---|
744 | {
|
---|
745 | struct state s; /* input/output state */
|
---|
746 | int last, type; /* block information */
|
---|
747 | int err; /* return value */
|
---|
748 |
|
---|
749 | /* initialize output state */
|
---|
750 | s.out = dest;
|
---|
751 | s.outlen = *destlen; /* ignored if dest is NIL */
|
---|
752 | s.outcnt = 0;
|
---|
753 |
|
---|
754 | /* initialize input state */
|
---|
755 | s.in = source;
|
---|
756 | s.inlen = *sourcelen;
|
---|
757 | s.incnt = 0;
|
---|
758 | s.bitbuf = 0;
|
---|
759 | s.bitcnt = 0;
|
---|
760 |
|
---|
761 | /* return if bits() or decode() tries to read past available input */
|
---|
762 | if (setjmp(s.env) != 0) /* if came back here via longjmp() */
|
---|
763 | err = 2; /* then skip do-loop, return error */
|
---|
764 | else {
|
---|
765 | /* process blocks until last block or error */
|
---|
766 | do {
|
---|
767 | last = bits(&s, 1); /* one if last block */
|
---|
768 | type = bits(&s, 2); /* block type 0..3 */
|
---|
769 | err = type == 0 ? stored(&s) :
|
---|
770 | (type == 1 ? fixed(&s) :
|
---|
771 | (type == 2 ? dynamic(&s) :
|
---|
772 | -1)); /* type == 3, invalid */
|
---|
773 | if (err != 0) break; /* return with error */
|
---|
774 | } while (!last);
|
---|
775 | }
|
---|
776 |
|
---|
777 | /* update the lengths and return */
|
---|
778 | if (err <= 0) {
|
---|
779 | *destlen = s.outcnt;
|
---|
780 | *sourcelen = s.incnt;
|
---|
781 | }
|
---|
782 | return err;
|
---|
783 | }
|
---|
784 |
|
---|
785 | #ifdef TEST
|
---|
786 | /* Example of how to use puff() */
|
---|
787 | #include <stdio.h>
|
---|
788 | #include <stdlib.h>
|
---|
789 | #include <sys/types.h>
|
---|
790 | #include <sys/stat.h>
|
---|
791 |
|
---|
792 | local unsigned char *yank(char *name, unsigned long *len)
|
---|
793 | {
|
---|
794 | unsigned long size;
|
---|
795 | unsigned char *buf;
|
---|
796 | FILE *in;
|
---|
797 | struct stat s;
|
---|
798 |
|
---|
799 | *len = 0;
|
---|
800 | if (stat(name, &s)) return NULL;
|
---|
801 | if ((s.st_mode & S_IFMT) != S_IFREG) return NULL;
|
---|
802 | size = (unsigned long)(s.st_size);
|
---|
803 | if (size == 0 || (off_t)size != s.st_size) return NULL;
|
---|
804 | in = fopen(name, "r");
|
---|
805 | if (in == NULL) return NULL;
|
---|
806 | buf = malloc(size);
|
---|
807 | if (buf != NULL && fread(buf, 1, size, in) != size) {
|
---|
808 | free(buf);
|
---|
809 | buf = NULL;
|
---|
810 | }
|
---|
811 | fclose(in);
|
---|
812 | *len = size;
|
---|
813 | return buf;
|
---|
814 | }
|
---|
815 |
|
---|
816 | int main(int argc, char **argv)
|
---|
817 | {
|
---|
818 | int ret;
|
---|
819 | unsigned char *source;
|
---|
820 | unsigned long len, sourcelen, destlen;
|
---|
821 |
|
---|
822 | if (argc < 2) return 2;
|
---|
823 | source = yank(argv[1], &len);
|
---|
824 | if (source == NULL) return 2;
|
---|
825 | sourcelen = len;
|
---|
826 | ret = puff(NIL, &destlen, source, &sourcelen);
|
---|
827 | if (ret)
|
---|
828 | printf("puff() failed with return code %d\n", ret);
|
---|
829 | else {
|
---|
830 | printf("puff() succeeded uncompressing %lu bytes\n", destlen);
|
---|
831 | if (sourcelen < len) printf("%lu compressed bytes unused\n",
|
---|
832 | len - sourcelen);
|
---|
833 | }
|
---|
834 | free(source);
|
---|
835 | return ret;
|
---|
836 | }
|
---|
837 | #endif
|
---|