1 | /* inftrees.c -- generate Huffman trees for efficient decoding
|
---|
2 | * Copyright (C) 1995-2005 Mark Adler
|
---|
3 | * For conditions of distribution and use, see copyright notice in zlib.h
|
---|
4 | */
|
---|
5 |
|
---|
6 | #include "zutil.h"
|
---|
7 | #include "inftrees.h"
|
---|
8 |
|
---|
9 | #define MAXBITS 15
|
---|
10 |
|
---|
11 | const char inflate_copyright[] =
|
---|
12 | " inflate 1.2.3 Copyright 1995-2005 Mark Adler ";
|
---|
13 | /*
|
---|
14 | If you use the zlib library in a product, an acknowledgment is welcome
|
---|
15 | in the documentation of your product. If for some reason you cannot
|
---|
16 | include such an acknowledgment, I would appreciate that you keep this
|
---|
17 | copyright string in the executable of your product.
|
---|
18 | */
|
---|
19 |
|
---|
20 | /*
|
---|
21 | Build a set of tables to decode the provided canonical Huffman code.
|
---|
22 | The code lengths are lens[0..codes-1]. The result starts at *table,
|
---|
23 | whose indices are 0..2^bits-1. work is a writable array of at least
|
---|
24 | lens shorts, which is used as a work area. type is the type of code
|
---|
25 | to be generated, CODES, LENS, or DISTS. On return, zero is success,
|
---|
26 | -1 is an invalid code, and +1 means that ENOUGH isn't enough. table
|
---|
27 | on return points to the next available entry's address. bits is the
|
---|
28 | requested root table index bits, and on return it is the actual root
|
---|
29 | table index bits. It will differ if the request is greater than the
|
---|
30 | longest code or if it is less than the shortest code.
|
---|
31 | */
|
---|
32 | int inflate_table(type, lens, codes, table, bits, work)
|
---|
33 | codetype type;
|
---|
34 | unsigned short FAR *lens;
|
---|
35 | unsigned codes;
|
---|
36 | code FAR * FAR *table;
|
---|
37 | unsigned FAR *bits;
|
---|
38 | unsigned short FAR *work;
|
---|
39 | {
|
---|
40 | unsigned len; /* a code's length in bits */
|
---|
41 | unsigned sym; /* index of code symbols */
|
---|
42 | unsigned min, max; /* minimum and maximum code lengths */
|
---|
43 | unsigned root; /* number of index bits for root table */
|
---|
44 | unsigned curr; /* number of index bits for current table */
|
---|
45 | unsigned drop; /* code bits to drop for sub-table */
|
---|
46 | int left; /* number of prefix codes available */
|
---|
47 | unsigned used; /* code entries in table used */
|
---|
48 | unsigned huff; /* Huffman code */
|
---|
49 | unsigned incr; /* for incrementing code, index */
|
---|
50 | unsigned fill; /* index for replicating entries */
|
---|
51 | unsigned low; /* low bits for current root entry */
|
---|
52 | unsigned mask; /* mask for low root bits */
|
---|
53 | code this; /* table entry for duplication */
|
---|
54 | code FAR *next; /* next available space in table */
|
---|
55 | const unsigned short FAR *base; /* base value table to use */
|
---|
56 | const unsigned short FAR *extra; /* extra bits table to use */
|
---|
57 | int end; /* use base and extra for symbol > end */
|
---|
58 | unsigned short count[MAXBITS+1]; /* number of codes of each length */
|
---|
59 | unsigned short offs[MAXBITS+1]; /* offsets in table for each length */
|
---|
60 | static const unsigned short lbase[31] = { /* Length codes 257..285 base */
|
---|
61 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
|
---|
62 | 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
|
---|
63 | static const unsigned short lext[31] = { /* Length codes 257..285 extra */
|
---|
64 | 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
|
---|
65 | 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 201, 196};
|
---|
66 | static const unsigned short dbase[32] = { /* Distance codes 0..29 base */
|
---|
67 | 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
|
---|
68 | 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
|
---|
69 | 8193, 12289, 16385, 24577, 0, 0};
|
---|
70 | static const unsigned short dext[32] = { /* Distance codes 0..29 extra */
|
---|
71 | 16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
|
---|
72 | 23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
|
---|
73 | 28, 28, 29, 29, 64, 64};
|
---|
74 |
|
---|
75 | /*
|
---|
76 | Process a set of code lengths to create a canonical Huffman code. The
|
---|
77 | code lengths are lens[0..codes-1]. Each length corresponds to the
|
---|
78 | symbols 0..codes-1. The Huffman code is generated by first sorting the
|
---|
79 | symbols by length from short to long, and retaining the symbol order
|
---|
80 | for codes with equal lengths. Then the code starts with all zero bits
|
---|
81 | for the first code of the shortest length, and the codes are integer
|
---|
82 | increments for the same length, and zeros are appended as the length
|
---|
83 | increases. For the deflate format, these bits are stored backwards
|
---|
84 | from their more natural integer increment ordering, and so when the
|
---|
85 | decoding tables are built in the large loop below, the integer codes
|
---|
86 | are incremented backwards.
|
---|
87 |
|
---|
88 | This routine assumes, but does not check, that all of the entries in
|
---|
89 | lens[] are in the range 0..MAXBITS. The caller must assure this.
|
---|
90 | 1..MAXBITS is interpreted as that code length. zero means that that
|
---|
91 | symbol does not occur in this code.
|
---|
92 |
|
---|
93 | The codes are sorted by computing a count of codes for each length,
|
---|
94 | creating from that a table of starting indices for each length in the
|
---|
95 | sorted table, and then entering the symbols in order in the sorted
|
---|
96 | table. The sorted table is work[], with that space being provided by
|
---|
97 | the caller.
|
---|
98 |
|
---|
99 | The length counts are used for other purposes as well, i.e. finding
|
---|
100 | the minimum and maximum length codes, determining if there are any
|
---|
101 | codes at all, checking for a valid set of lengths, and looking ahead
|
---|
102 | at length counts to determine sub-table sizes when building the
|
---|
103 | decoding tables.
|
---|
104 | */
|
---|
105 |
|
---|
106 | /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
|
---|
107 | for (len = 0; len <= MAXBITS; len++)
|
---|
108 | count[len] = 0;
|
---|
109 | for (sym = 0; sym < codes; sym++)
|
---|
110 | count[lens[sym]]++;
|
---|
111 |
|
---|
112 | /* bound code lengths, force root to be within code lengths */
|
---|
113 | root = *bits;
|
---|
114 | for (max = MAXBITS; max >= 1; max--)
|
---|
115 | if (count[max] != 0) break;
|
---|
116 | if (root > max) root = max;
|
---|
117 | if (max == 0) { /* no symbols to code at all */
|
---|
118 | this.op = (unsigned char)64; /* invalid code marker */
|
---|
119 | this.bits = (unsigned char)1;
|
---|
120 | this.val = (unsigned short)0;
|
---|
121 | *(*table)++ = this; /* make a table to force an error */
|
---|
122 | *(*table)++ = this;
|
---|
123 | *bits = 1;
|
---|
124 | return 0; /* no symbols, but wait for decoding to report error */
|
---|
125 | }
|
---|
126 | for (min = 1; min <= MAXBITS; min++)
|
---|
127 | if (count[min] != 0) break;
|
---|
128 | if (root < min) root = min;
|
---|
129 |
|
---|
130 | /* check for an over-subscribed or incomplete set of lengths */
|
---|
131 | left = 1;
|
---|
132 | for (len = 1; len <= MAXBITS; len++) {
|
---|
133 | left <<= 1;
|
---|
134 | left -= count[len];
|
---|
135 | if (left < 0) return -1; /* over-subscribed */
|
---|
136 | }
|
---|
137 | if (left > 0 && (type == CODES || max != 1))
|
---|
138 | return -1; /* incomplete set */
|
---|
139 |
|
---|
140 | /* generate offsets into symbol table for each length for sorting */
|
---|
141 | offs[1] = 0;
|
---|
142 | for (len = 1; len < MAXBITS; len++)
|
---|
143 | offs[len + 1] = offs[len] + count[len];
|
---|
144 |
|
---|
145 | /* sort symbols by length, by symbol order within each length */
|
---|
146 | for (sym = 0; sym < codes; sym++)
|
---|
147 | if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym;
|
---|
148 |
|
---|
149 | /*
|
---|
150 | Create and fill in decoding tables. In this loop, the table being
|
---|
151 | filled is at next and has curr index bits. The code being used is huff
|
---|
152 | with length len. That code is converted to an index by dropping drop
|
---|
153 | bits off of the bottom. For codes where len is less than drop + curr,
|
---|
154 | those top drop + curr - len bits are incremented through all values to
|
---|
155 | fill the table with replicated entries.
|
---|
156 |
|
---|
157 | root is the number of index bits for the root table. When len exceeds
|
---|
158 | root, sub-tables are created pointed to by the root entry with an index
|
---|
159 | of the low root bits of huff. This is saved in low to check for when a
|
---|
160 | new sub-table should be started. drop is zero when the root table is
|
---|
161 | being filled, and drop is root when sub-tables are being filled.
|
---|
162 |
|
---|
163 | When a new sub-table is needed, it is necessary to look ahead in the
|
---|
164 | code lengths to determine what size sub-table is needed. The length
|
---|
165 | counts are used for this, and so count[] is decremented as codes are
|
---|
166 | entered in the tables.
|
---|
167 |
|
---|
168 | used keeps track of how many table entries have been allocated from the
|
---|
169 | provided *table space. It is checked when a LENS table is being made
|
---|
170 | against the space in *table, ENOUGH, minus the maximum space needed by
|
---|
171 | the worst case distance code, MAXD. This should never happen, but the
|
---|
172 | sufficiency of ENOUGH has not been proven exhaustively, hence the check.
|
---|
173 | This assumes that when type == LENS, bits == 9.
|
---|
174 |
|
---|
175 | sym increments through all symbols, and the loop terminates when
|
---|
176 | all codes of length max, i.e. all codes, have been processed. This
|
---|
177 | routine permits incomplete codes, so another loop after this one fills
|
---|
178 | in the rest of the decoding tables with invalid code markers.
|
---|
179 | */
|
---|
180 |
|
---|
181 | /* set up for code type */
|
---|
182 | switch (type) {
|
---|
183 | case CODES:
|
---|
184 | base = extra = work; /* dummy value--not used */
|
---|
185 | end = 19;
|
---|
186 | break;
|
---|
187 | case LENS:
|
---|
188 | base = lbase;
|
---|
189 | base -= 257;
|
---|
190 | extra = lext;
|
---|
191 | extra -= 257;
|
---|
192 | end = 256;
|
---|
193 | break;
|
---|
194 | default: /* DISTS */
|
---|
195 | base = dbase;
|
---|
196 | extra = dext;
|
---|
197 | end = -1;
|
---|
198 | }
|
---|
199 |
|
---|
200 | /* initialize state for loop */
|
---|
201 | huff = 0; /* starting code */
|
---|
202 | sym = 0; /* starting code symbol */
|
---|
203 | len = min; /* starting code length */
|
---|
204 | next = *table; /* current table to fill in */
|
---|
205 | curr = root; /* current table index bits */
|
---|
206 | drop = 0; /* current bits to drop from code for index */
|
---|
207 | low = (unsigned)(-1); /* trigger new sub-table when len > root */
|
---|
208 | used = 1U << root; /* use root table entries */
|
---|
209 | mask = used - 1; /* mask for comparing low */
|
---|
210 |
|
---|
211 | /* check available table space */
|
---|
212 | if (type == LENS && used >= ENOUGH - MAXD)
|
---|
213 | return 1;
|
---|
214 |
|
---|
215 | /* process all codes and make table entries */
|
---|
216 | for (;;) {
|
---|
217 | /* create table entry */
|
---|
218 | this.bits = (unsigned char)(len - drop);
|
---|
219 | if ((int)(work[sym]) < end) {
|
---|
220 | this.op = (unsigned char)0;
|
---|
221 | this.val = work[sym];
|
---|
222 | }
|
---|
223 | else if ((int)(work[sym]) > end) {
|
---|
224 | this.op = (unsigned char)(extra[work[sym]]);
|
---|
225 | this.val = base[work[sym]];
|
---|
226 | }
|
---|
227 | else {
|
---|
228 | this.op = (unsigned char)(32 + 64); /* end of block */
|
---|
229 | this.val = 0;
|
---|
230 | }
|
---|
231 |
|
---|
232 | /* replicate for those indices with low len bits equal to huff */
|
---|
233 | incr = 1U << (len - drop);
|
---|
234 | fill = 1U << curr;
|
---|
235 | min = fill; /* save offset to next table */
|
---|
236 | do {
|
---|
237 | fill -= incr;
|
---|
238 | next[(huff >> drop) + fill] = this;
|
---|
239 | } while (fill != 0);
|
---|
240 |
|
---|
241 | /* backwards increment the len-bit code huff */
|
---|
242 | incr = 1U << (len - 1);
|
---|
243 | while (huff & incr)
|
---|
244 | incr >>= 1;
|
---|
245 | if (incr != 0) {
|
---|
246 | huff &= incr - 1;
|
---|
247 | huff += incr;
|
---|
248 | }
|
---|
249 | else
|
---|
250 | huff = 0;
|
---|
251 |
|
---|
252 | /* go to next symbol, update count, len */
|
---|
253 | sym++;
|
---|
254 | if (--(count[len]) == 0) {
|
---|
255 | if (len == max) break;
|
---|
256 | len = lens[work[sym]];
|
---|
257 | }
|
---|
258 |
|
---|
259 | /* create new sub-table if needed */
|
---|
260 | if (len > root && (huff & mask) != low) {
|
---|
261 | /* if first time, transition to sub-tables */
|
---|
262 | if (drop == 0)
|
---|
263 | drop = root;
|
---|
264 |
|
---|
265 | /* increment past last table */
|
---|
266 | next += min; /* here min is 1 << curr */
|
---|
267 |
|
---|
268 | /* determine length of next table */
|
---|
269 | curr = len - drop;
|
---|
270 | left = (int)(1 << curr);
|
---|
271 | while (curr + drop < max) {
|
---|
272 | left -= count[curr + drop];
|
---|
273 | if (left <= 0) break;
|
---|
274 | curr++;
|
---|
275 | left <<= 1;
|
---|
276 | }
|
---|
277 |
|
---|
278 | /* check for enough space */
|
---|
279 | used += 1U << curr;
|
---|
280 | if (type == LENS && used >= ENOUGH - MAXD)
|
---|
281 | return 1;
|
---|
282 |
|
---|
283 | /* point entry in root table to sub-table */
|
---|
284 | low = huff & mask;
|
---|
285 | (*table)[low].op = (unsigned char)curr;
|
---|
286 | (*table)[low].bits = (unsigned char)root;
|
---|
287 | (*table)[low].val = (unsigned short)(next - *table);
|
---|
288 | }
|
---|
289 | }
|
---|
290 |
|
---|
291 | /*
|
---|
292 | Fill in rest of table for incomplete codes. This loop is similar to the
|
---|
293 | loop above in incrementing huff for table indices. It is assumed that
|
---|
294 | len is equal to curr + drop, so there is no loop needed to increment
|
---|
295 | through high index bits. When the current sub-table is filled, the loop
|
---|
296 | drops back to the root table to fill in any remaining entries there.
|
---|
297 | */
|
---|
298 | this.op = (unsigned char)64; /* invalid code marker */
|
---|
299 | this.bits = (unsigned char)(len - drop);
|
---|
300 | this.val = (unsigned short)0;
|
---|
301 | while (huff != 0) {
|
---|
302 | /* when done with sub-table, drop back to root table */
|
---|
303 | if (drop != 0 && (huff & mask) != low) {
|
---|
304 | drop = 0;
|
---|
305 | len = root;
|
---|
306 | next = *table;
|
---|
307 | this.bits = (unsigned char)len;
|
---|
308 | }
|
---|
309 |
|
---|
310 | /* put invalid code marker in table */
|
---|
311 | next[huff >> drop] = this;
|
---|
312 |
|
---|
313 | /* backwards increment the len-bit code huff */
|
---|
314 | incr = 1U << (len - 1);
|
---|
315 | while (huff & incr)
|
---|
316 | incr >>= 1;
|
---|
317 | if (incr != 0) {
|
---|
318 | huff &= incr - 1;
|
---|
319 | huff += incr;
|
---|
320 | }
|
---|
321 | else
|
---|
322 | huff = 0;
|
---|
323 | }
|
---|
324 |
|
---|
325 | /* set return parameters */
|
---|
326 | *table += used;
|
---|
327 | *bits = root;
|
---|
328 | return 0;
|
---|
329 | }
|
---|